IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp666-675.html
   My bibliography  Save this article

Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil

Author

Listed:
  • Xu, Zhi-Xiang
  • Liu, Peng
  • Xu, Gui-Sheng
  • Liu, Qing
  • He, Zhi-Xia
  • Wang, Qian

Abstract

Pyrolysis characteristic of hydrogenated palm oil (HPO) was analyzed using TG, TG-FTIR-MS and Py-GC-MS. Bio-fuel oil (BFO) was obtained using catalytic cracking method. The BFO was analyzed by FTIR, 1H NMR, 13C NMR, GC-MS and ESI FT-ICR MS to provide complementary and comprehensive adequate information. TG-DTG results showed that the HPO pyrolysis was different with other plant oil. It was clear that HPO pyrolysis was mainly in temperature range of 350 °C–500 °C. The mean activation energy of HPO pyrolysis calculated from KAS and FWO models was 161.10 kJ/mol and 164.28 kJ/mol, respectively. According to TG-FTIR-MS results, little amount of gas components was detected. Py-GC-MS result found heavy compounds, which carbon number exceeds 18. FTIR, 1H NMR, 13C NMR and GC-MS results found the BFO mainly contained long-chain alkane and alkene. According to ESI FT-ICR MS, the oxygen containing compounds in BFO were from O2O6 classes, with the O2 being the major class. The RSFTIR was first used to analyze biomass pyrolysis. The results found that in the decarboxylation process, the carbon chain also was cracked to form short carbon chain carboxyl firstly. According to above experiments results, we can confirm HPO pyrolysis path was different with palm oil. The key conclusion was that HPO maybe was a good bio-resource to obtain BFO, and it was mainly contained diesel-like components. Compared to palm oil pyrolysis products, HPO pyrolysis products were mainly contained long-chain alkane and alkene. The recommended pyrolysis path was also proposed.

Suggested Citation

  • Xu, Zhi-Xiang & Liu, Peng & Xu, Gui-Sheng & Liu, Qing & He, Zhi-Xia & Wang, Qian, 2017. "Bio-fuel oil characteristic from catalytic cracking of hydrogenated palm oil," Energy, Elsevier, vol. 133(C), pages 666-675.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:666-675
    DOI: 10.1016/j.energy.2017.05.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Bo-Jhih & Chen, Wei-Hsin & Hsieh, Tzu-Hsien & Ong, Hwai Chyuan & Show, Pau Loke & Naqvi, Salman Raza, 2019. "Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels," Renewable Energy, Elsevier, vol. 136(C), pages 223-234.
    2. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    3. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    4. Xu, Zhi-Xiang & Song, Hao & Zhang, Shu & Tong, Si-Qi & He, Zhi-Xia & Wang, Qian & Li, Bin & Hu, Xun, 2019. "Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:666-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.