IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp182-191.html
   My bibliography  Save this article

Fischer-Tropsch route for the conversion of biomass to liquid fuels - Technical and economic analysis

Author

Listed:
  • Snehesh, Ail Shivananda
  • Mukunda, H.S.
  • Mahapatra, Sadhan
  • Dasappa, S.

Abstract

The techno-economics of biomass gasification systems for the production of Fischer-Tropsch (FT) based liquid fuels are analysed by estimating the overall mass and energy conversion of biomass to liquid (BTL) fuel. The investigation of BTL systems for 1000 kg/h biomass gasification system and an expected liquid hydrocarbon output of 1500 tonnes are estimated. The cost analysis, based on the annualized life cycle of the systems, includes a steam-oxygen based biomass gasification plant paired with the FT unit. The gasifier considered in this analysis is the downdraft reactor design, operating on oxygen-steam gasifying medium at an equivalence ratio of 0.1 and a steam-to-biomass ratio in the range of 0.8–1.2 to generate syngas with H2/CO ratio of 2.1:1, ideally suitable for the cobalt based fixed bed FT reactor. The mass and energy balance reveal that for a once-through FT reactor configuration, substantial energy exists in the gas phase, which includes C1-C5 hydrocarbons and unconverted syngas. The study suggests that the product gas be utilized in an IC engine and converted to electricity, for in-house power demands and for the sale of excess electricity to the grid. The analysis indicates a market competitive liquid fuel production with CO conversion greater than 60%, at a cost ranging from INR 35–40/litre (0.5–0.6 USD/litre) alongside electricity as a major co-product in the BTL system. This study examines the economics of building economically affordable and environmentally favourable BTL systems of smaller throughputs with particular reference to India.

Suggested Citation

  • Snehesh, Ail Shivananda & Mukunda, H.S. & Mahapatra, Sadhan & Dasappa, S., 2017. "Fischer-Tropsch route for the conversion of biomass to liquid fuels - Technical and economic analysis," Energy, Elsevier, vol. 130(C), pages 182-191.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:182-191
    DOI: 10.1016/j.energy.2017.04.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Im-orb, Karittha & Arpornwichanop, Amornchai, 2016. "Techno-environmental analysis of the biomass gasification and Fischer-Tropsch integrated process for the co-production of bio-fuel and power," Energy, Elsevier, vol. 112(C), pages 121-132.
    2. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    3. Heidi Ledford, 2006. "Making it up as you go along," Nature, Nature, vol. 444(7120), pages 677-678, December.
    4. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    5. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    6. Haarlemmer, Geert & Boissonnet, Guillaume & Peduzzi, Emanuela & Setier, Pierre-Alexandre, 2014. "Investment and production costs of synthetic fuels – A literature survey," Energy, Elsevier, vol. 66(C), pages 667-676.
    7. Ghosh, Sajal, 2009. "Import demand of crude oil and economic growth: Evidence from India," Energy Policy, Elsevier, vol. 37(2), pages 699-702, February.
    8. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tilia Dahou & Françoise Defoort & Sébastien Thiéry & Maguelone Grateau & Matthieu Campargue & Simona Bennici & Mejdi Jeguirim & Capucine Dupont, 2018. "The Influence of Char Preparation and Biomass Type on Char Steam Gasification Kinetics," Energies, MDPI, vol. 11(8), pages 1-15, August.
    2. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    3. Marchese, Marco & Chesta, Simone & Santarelli, Massimo & Lanzini, Andrea, 2021. "Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification," Energy, Elsevier, vol. 228(C).
    4. Ullah, Kifayat & Sharma, Vinod Kumar & Ahmad, Mushtaq & Lv, Pengmei & Krahl, Jurgen & Wang, Zhongming & Sofia,, 2018. "The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3992-4008.
    5. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    6. Borugadda, Venu Babu & Kamath, Girish & Dalai, Ajay K., 2020. "Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production," Energy, Elsevier, vol. 195(C).
    7. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    8. Nielsen, Anders S. & Peppley, Brant A. & Burheim, Odne S., 2023. "Controlling the contribution of transport mechanisms in solid oxide co-electrolysis cells to improve product selectivity and performance: A theoretical framework," Applied Energy, Elsevier, vol. 344(C).
    9. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    2. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    3. Kreutz, Thomas G. & Larson, Eric D. & Elsido, Cristina & Martelli, Emanuele & Greig, Chris & Williams, Robert H., 2020. "Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR," Applied Energy, Elsevier, vol. 279(C).
    4. Pleyer, Olga & Vrtiška, Dan & Straka, Petr & Šimáček, Pavel, 2024. "Co-processing of BTL Fischer-Tropsch wax and heavy vacuum gas oil," Renewable Energy, Elsevier, vol. 225(C).
    5. Dossow, Marcel & Dieterich, Vincent & Hanel, Andreas & Spliethoff, Hartmut & Fendt, Sebastian, 2021. "Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Teimouri, Zahra & Borugadda, Venu Babu & Dalai, Ajay K. & Abatzoglou, Nicolas, 2022. "Application of computational fluid dynamics for modeling of Fischer-Tropsch synthesis as a sustainable energy resource in different reactor configurations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. de Oliveira, Diego C. & Lora, Electo E.S. & Venturini, Osvaldo J. & Maya, Diego M.Y. & Garcia-Pérez, Manuel, 2023. "Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    10. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    11. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    12. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    13. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    14. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    15. Ramaharo, Franck Maminirina & Razanajatovo, Yves Heritiana Mihaja & Ravelomanantsoa, Fabienne Mahefatiana & Ramarosandratana, Saotra Finiavana Melodia & Aljaona, Emanuella Miora, 2024. "The impact of energy demand on economic growth: A new empirical evidence for Madagascar," AfricArxiv xwktc, Center for Open Science.
    16. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    17. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    18. Özgür Özaydın* & H. Alper Güzel, 2019. "Oil Consumption and Economic Growth in Turkey: An ARDL Bounds Test Approach in the Presence of Structural Breaks," Business, Management and Economics Research, Academic Research Publishing Group, vol. 5(6), pages 77-85, 06-2019.
    19. Anand, B. & Paul, Sunil & Ramachandran, M., 2014. "Volatility Spillover between Oil and Stock Market Returns," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 49(1), pages 37-56.
    20. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:182-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.