IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp899-914.html
   My bibliography  Save this article

Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy

Author

Listed:
  • Mehrpooya, Mehdi
  • Ashouri, Milad
  • Mohammadi, Amin

Abstract

This study investigates the thermoeconomic performance of a new integrated system including a regenerative two stage organic Rankine cycle which is coupled with a parabolic trough collector via a thermal storage tank. The cold energy of liquefied natural gas (LNG) is used to absorb the heat duty of condenser. The LNG subsystem not only allows the ORC cycle to produce more power by reducing its condensate pressure, but also provides the system with extra power via the LNG expander and chilled water. The system is capable of producing power with solar fraction of a hundred percent during the day. The thermoeconomic analysis is performed to optimize the system for design point conditions. The analysis also reveals the exergoeconomic criteria on system components. Results show that solar collector has the most value of Z˙+C˙D which is due to both high exergy destruction and high investment costs of solar collector. Also, storage tank and condenser are the second and third important components with respect to exergoeconomic criterion. Parametric analysis is performed on the system to show the effects of eleven key thermodynamic parameters on system performance. In order for optimization, the product cost rate and exergy efficiency are chosen as the objectives. Eleven decision variables including inlet temperature and pressure of the turbines, heat exchanger minimum temperature differences along with the mass flow rate of storage tank, condensate pressure and LNG pressure were chosen according to parametric analysis. With the aid of TOPSIS decision making technique, the optimal point was selected among the Pareto frontier of the genetic algorithm. Results show that system can reach the efficiency of 19.59% and product cost rate of 3.88 million dollars per year.

Suggested Citation

  • Mehrpooya, Mehdi & Ashouri, Milad & Mohammadi, Amin, 2017. "Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy," Energy, Elsevier, vol. 126(C), pages 899-914.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:899-914
    DOI: 10.1016/j.energy.2017.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milad Ashouri & Fatemeh Razi Astaraei & Roghaye Ghasempour & M.H. Ahmadi & Michel Feidt, 2017. "Thermodynamic and economic evaluation of a small-scale organic Rankine cycle integrated with a concentrating solar collector," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(1), pages 54-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    2. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Tian, Zhen & Gan, Wanlong & Qi, Zhixin & Tian, Molin & Gao, Wenzhong, 2022. "Experimental study of organic Rankine cycle with three-fluid recuperator for cryogenic cold energy recovery," Energy, Elsevier, vol. 242(C).
    4. Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
    5. Özen, Dilek Nur & Koçak, Betül, 2022. "Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas," Energy, Elsevier, vol. 248(C).
    6. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    7. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    8. Pan, Jie & Cao, Qinghan & Li, Mofan & Li, Ran & Tang, Linghong & Bai, Junhua, 2024. "Energy integration of light hydrocarbon separation, LNG cold energy power generation, and BOG combustion: Thermo-economic optimization and analysis," Applied Energy, Elsevier, vol. 356(C).
    9. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    10. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    11. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    12. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    13. Dadpour, Daryoush & Gholizadeh, Mohammad & Estiri, Mohammad & Poncet, Sébastien, 2023. "Multi objective optimization and 3E analyses of a novel supercritical/transcritical CO2 waste heat recovery from a ship exhaust," Energy, Elsevier, vol. 278(C).
    14. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    15. Wang, Shiqi & Yuan, Zhongyuan & Yu, Nanyang, 2023. "Thermo-economic optimization of organic Rankine cycle with steam-water dual heat source," Energy, Elsevier, vol. 274(C).
    16. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
    17. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man-Hoe Kim, 2022. "Energy and Exergy Analysis of Solar Organic Rankine Cycle Coupled with Vapor Compression Refrigeration Cycle," Energies, MDPI, vol. 15(15), pages 1-16, August.
    2. Ali Komeili Birjandi & Morteza Fahim Alavi & Mohamed Salem & Mamdouh El Haj Assad & Natarajan Prabaharan, 2022. "Modeling carbon dioxide emission of countries in southeast of Asia by applying artificial neural network [Energy and exergy analyses of single flash geothermal power plant at optimum separator temp," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 321-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:899-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.