IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip2p405-415.html
   My bibliography  Save this article

Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission

Author

Listed:
  • Costa, M.
  • Sorge, U.
  • Merola, S.
  • Irimescu, A.
  • La Villetta, M.
  • Rocco, V.

Abstract

The effects of splitting the injection event in a GDI (gasoline direct injection) engine operating with a HOS (homogeneous stratified) lean charge are analysed through experimental and numerical techniques. Injection is assumed as divided in two parts, each delivering the same gasoline amount, the first occurring during intake, the second during compression.

Suggested Citation

  • Costa, M. & Sorge, U. & Merola, S. & Irimescu, A. & La Villetta, M. & Rocco, V., 2016. "Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission," Energy, Elsevier, vol. 117(P2), pages 405-415.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:405-415
    DOI: 10.1016/j.energy.2016.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216303097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, Alex M.K.P., 2008. "Science review of internal combustion engines," Energy Policy, Elsevier, vol. 36(12), pages 4657-4667, December.
    2. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    3. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    4. Chitsaz, Iman & Saidi, Mohammad Hassan & Mozafari, Ali Asghar & Hajialimohammadi, Alireza, 2013. "Experimental and numerical investigation on the jet characteristics of spark ignition direct injection gaseous injector," Applied Energy, Elsevier, vol. 105(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahebjamei, M. & Amani, E. & Nobari, M.R.H., 2019. "Numerical analysis of radial and angular stratification in turbulent swirling flames," Energy, Elsevier, vol. 173(C), pages 523-539.
    2. Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
    3. Fridrichová, K. & Drápal, L. & Vopařil, J. & Dlugoš, J., 2021. "Overview of the potential and limitations of cylinder deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Han, Taehoon & Singh, Ripudaman & Lavoie, George & Wooldridge, Margaret & Boehman, André, 2020. "Multiple injection for improving knock, gaseous and particulate matter emissions in direct injection SI engines," Applied Energy, Elsevier, vol. 262(C).
    5. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    6. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    7. Gong, Changming & Zhang, Zilei & Sun, Jingzhen & Chen, Yulin & Liu, Fenghua, 2020. "Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition," Energy, Elsevier, vol. 205(C).
    8. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    2. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    3. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    4. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    5. Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
    6. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    7. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    8. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    9. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    10. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    11. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    12. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    13. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    14. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Jiao, Weizhou & Wang, Yonghong & Li, Xiaoxia & Xu, Chengcheng & Liu, Youzhi & Zhang, Qiaoling, 2016. "Stabilization performance of methanol-diesel emulsified fuel prepared using an impinging stream-rotating packed bed," Renewable Energy, Elsevier, vol. 85(C), pages 573-579.
    16. Peng, Zhijun & Wang, Tianyou & He, Yongling & Yang, Xiaoyi & Lu, Lipeng, 2013. "Analysis of environmental and economic benefits of integrated Exhaust Energy Recovery (EER) for vehicles," Applied Energy, Elsevier, vol. 105(C), pages 238-243.
    17. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    18. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    19. Rüdisüli, Martin & Bach, Christian & Bauer, Christian & Beloin-Saint-Pierre, Didier & Elber, Urs & Georges, Gil & Limpach, Robert & Pareschi, Giacomo & Kannan, Ramachandran & Teske, Sinan L., 2022. "Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options," Applied Energy, Elsevier, vol. 306(PB).
    20. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:405-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.