IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p338-352.html
   My bibliography  Save this article

Strategic multiyear transmission expansion planning under severe uncertainties by a combination of melody search algorithm and Powell heuristic method

Author

Listed:
  • Shivaie, Mojtaba
  • Ameli, Mohammad T.

Abstract

In this paper, a new strategic multiyear model is presented for Transmission Expansion Planning (TEP) in deregulated environments. This methodology is based on a tri-level decision making whose fundamental elements are pool-based electricity market and strategic behavior of market participants. In addition, to minimize risks of planning arising from severe uncertainties, an information gap decision theory (IGDT) is used. By using the IGDT, the TEP model is formulated for the risk-averse and risk-seeker decision makers through the robustness and opportunity models, respectively. The offered model is formulated as a non-convex mixed-integer non-linear optimization problem. With this regards, a combination of melody search algorithm and improved Powell heuristic method is widely used to determine the optimal solution. The planning methodology has been applied to the IEEE 30-bus test system and to the large-scale Iranian 400-kV transmission grid. Simulation results demonstrate the feasibility and effectiveness of the proposed model, and the fact that it can be profitable for the real-world networks.

Suggested Citation

  • Shivaie, Mojtaba & Ameli, Mohammad T., 2016. "Strategic multiyear transmission expansion planning under severe uncertainties by a combination of melody search algorithm and Powell heuristic method," Energy, Elsevier, vol. 115(P1), pages 338-352.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:338-352
    DOI: 10.1016/j.energy.2016.08.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chamorro, José M. & Abadie, Luis M. & de Neufville, Richard & Ilić, Marija, 2012. "Market-based valuation of transmission network expansion. A heuristic application in GB," Energy, Elsevier, vol. 44(1), pages 302-320.
    2. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zolfaghari, Saeed & Akbari, Tohid, 2018. "Bilevel transmission expansion planning using second-order cone programming considering wind investment," Energy, Elsevier, vol. 154(C), pages 455-465.
    2. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    3. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    4. Javadi, Mohammad Sadegh & Razavi, Seyed-Ehsan & Ahmadi, Abdollah & Siano, Pierluigi, 2019. "A novel approach for distant wind farm interconnection: Iran South-West wind farms integration," Renewable Energy, Elsevier, vol. 140(C), pages 737-750.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianxiao & Zhong, Haiwang & Xia, Qing & Kang, Chongqing, 2017. "Optimal transmission conversion from alternating current to high voltage direct current transmission systems for limiting short circuit currents," Energy, Elsevier, vol. 118(C), pages 545-555.
    2. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    3. Kosugi, Takanobu, 2016. "Endogenizing the probability of nuclear exit in an optimal power-generation mix model," Energy, Elsevier, vol. 100(C), pages 102-114.
    4. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    5. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    6. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.
    7. Rodgers, Mark D. & Coit, David W. & Felder, Frank A. & Carlton, Annmarie, 2018. "Generation expansion planning considering health and societal damages – A simulation-based optimization approach," Energy, Elsevier, vol. 164(C), pages 951-963.
    8. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    9. Xian Huang & Kun Liu, 2023. "Impact of Electricity Price Expectation in the Planning Period on the Evolution of Generation Expansion Planning in the Market Environment," Energies, MDPI, vol. 16(8), pages 1-21, April.
    10. Javadi, Mohammad Sadegh & Razavi, Seyed-Ehsan & Ahmadi, Abdollah & Siano, Pierluigi, 2019. "A novel approach for distant wind farm interconnection: Iran South-West wind farms integration," Renewable Energy, Elsevier, vol. 140(C), pages 737-750.
    11. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    12. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    13. Tan, Siah Hong & Barton, Paul I., 2016. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty," Energy, Elsevier, vol. 96(C), pages 461-467.
    14. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    15. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    16. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    17. Ning Zhang & Hongcai Dai & Yaohua Wang & Yunzhou Zhang & Yuqing Yang, 2021. "Power system transition in China under the coordinated development of power sources, network, demand response, and energy storage," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(2), March.
    18. Morgan Bazilian & Debabrata Chattopadhyay, 2015. "Considering Power System Planning in Fragile and Conflict States," Cambridge Working Papers in Economics 1530, Faculty of Economics, University of Cambridge.
    19. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Beneficiaries of transmission expansion projects of an expansion plan: An Aumann-Shapley approach," Applied Energy, Elsevier, vol. 195(C), pages 382-401.
    20. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:338-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.