IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp73-86.html
   My bibliography  Save this article

Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry

Author

Listed:
  • Liu, Xianbing
  • Fan, Yongbin
  • Li, Chen

Abstract

This study estimates the effect of using carbon pricing to promote the diffusion of low carbon technologies based on data collected from 78 cement companies in China. The analysis confirms that they are familiar with major energy saving and low carbon technologies in the sector and have made efforts in energy saving, but are lagging in terms of carbon management. An average payback time of 3.3 years is confirmed as the threshold for cement companies to determine technology investment. The adoptions of target technologies in this survey are at different stages; WHR (waste heat recovery power generation) systems have been largely diffused and the effect of carbon pricing is highly marginal for further adoption. On the other hand, levying a moderate carbon price, i.e., 60 Yuan/t-CO2, may accelerate the diffusion of EMOS (energy management and optimisation systems), recently introduced in China's cement industry. This research goes some way to clarifying the diffusion of low carbon technologies and provides implications for climate countermeasures for the target sector in China.

Suggested Citation

  • Liu, Xianbing & Fan, Yongbin & Li, Chen, 2016. "Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry," Energy, Elsevier, vol. 106(C), pages 73-86.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:73-86
    DOI: 10.1016/j.energy.2016.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
    2. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    3. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    4. Ke, Jing & McNeil, Michael & Price, Lynn & Khanna, Nina Zheng & Zhou, Nan, 2013. "Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties," Energy Policy, Elsevier, vol. 57(C), pages 172-181.
    5. Liu, Xianbing & Wang, Can & Zhang, Weishi & Suk, Sunhee & Sudo, Kinichi, 2013. "Company's affordability of increased energy costs due to climate policies: A survey by sector in China," Energy Economics, Elsevier, vol. 36(C), pages 419-430.
    6. Lilliestam, Johan & Bielicki, Jeffrey M. & Patt, Anthony G., 2012. "Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers," Energy Policy, Elsevier, vol. 47(C), pages 447-455.
    7. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    8. Abeelen, Christiaan & Harmsen, Robert & Worrell, Ernst, 2013. "Implementation of energy efficiency projects by Dutch industry," Energy Policy, Elsevier, vol. 63(C), pages 408-418.
    9. Tran, Martino, 2012. "Technology-behavioural modelling of energy innovation diffusion in the UK," Applied Energy, Elsevier, vol. 95(C), pages 1-11.
    10. Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
    11. Pizer, William & Kopp, Raymond & Morgenstern, Richard & Harrington, Winston & Shih, Jhih-Shyang, 2002. "Technology Adoption and Aggregate Energy Efficiency," RFF Working Paper Series dp-02-52, Resources for the Future.
    12. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    13. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    14. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    15. McJeon, Haewon C. & Clarke, Leon & Kyle, Page & Wise, Marshall & Hackbarth, Andrew & Bryant, Benjamin P. & Lempert, Robert J., 2011. "Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?," Energy Economics, Elsevier, vol. 33(4), pages 619-631, July.
    16. Lund, Peter, 2006. "Market penetration rates of new energy technologies," Energy Policy, Elsevier, vol. 34(17), pages 3317-3326, November.
    17. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    18. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    19. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    2. Chang, Kai & Zhang, Chao, 2018. "Asymmetric dependence structure between emissions allowances and wholesale diesel/gasoline prices in emerging China's emissions trading scheme pilots," Energy, Elsevier, vol. 164(C), pages 124-136.
    3. Fang, Chenhao & Ma, Tieju, 2020. "Stylized agent-based modeling on linking emission trading systems and its implications for China's practice," Energy Economics, Elsevier, vol. 92(C).
    4. Chang-Jing Ji & Yu-Jie Hu & Bao-Jun Tang, 2018. "Research on carbon market price mechanism and influencing factors: a literature review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 761-782, June.
    5. Wang, Hai & Ye, Shuai & Chen, Hui & Yin, Junya, 2023. "The impact of carbon emission trading policy on overcapacity of companies: Evidence from China," Energy Economics, Elsevier, vol. 126(C).
    6. Jia Xue & Youshi He & Peng Gao & Yin Tang & Hanyang Xu, 2022. "Multi-Agent Evolutionary Game Model: Corporate Low-Carbon Manufacturing, Chinese Government Supervision, and Public Media Investigation," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
    7. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    8. Zeng, Yongchao & Shi, Yingying & Shahbaz, Muhammad & Liu, Qin, 2024. "Scenario-based policy representative exploration: A novel approach to analyzing policy portfolios and its application to low-carbon energy diffusion," Energy, Elsevier, vol. 296(C).
    9. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    10. Junxiao Wei & Kuang Cen & Yuanbo Geng, 2019. "Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 301-328, February.
    11. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    12. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
    13. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. del Río González, Pablo, 2009. "The empirical analysis of the determinants for environmental technological change: A research agenda," Ecological Economics, Elsevier, vol. 68(3), pages 861-878, January.
    4. Lehmann, Paul, 2008. "Using a policy mix for pollution control: A review of economic literature," UFZ Discussion Papers 4/2008, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Hammar, Henrik & Löfgren, Åsa, 2007. "Explaining adoption of end of pipe solutions and clean technologies," Working Papers 102, National Institute of Economic Research.
    6. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    7. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    8. Liu, Xianbing & Niu, Dongjie & Bao, Cunkuan & Suk, Sunhee & Sudo, Kinichi, 2013. "Affordability of energy cost increases for companies due to market-based climate policies: A survey in Taicang, China," Applied Energy, Elsevier, vol. 102(C), pages 1464-1476.
    9. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
    10. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    11. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    12. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    13. Shum, Kwok L. & Watanabe, Chihiro, 2010. "Network externality perspective of feed-in-tariffs (FIT) instruments--Some observations and suggestions," Energy Policy, Elsevier, vol. 38(7), pages 3266-3269, July.
    14. Rogge, Karoline S. & Hoffmann, Volker H., 2009. "The impact of the EU ETS on the sectoral innovation system for power generation technologies: findings for Germany," Working Papers "Sustainability and Innovation" S2/2009, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    16. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    17. De Marchi, Valentina, 2012. "Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms," Research Policy, Elsevier, vol. 41(3), pages 614-623.
    18. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    19. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    20. Graf, Holger & Kalthaus, Martin, 2018. "International research networks: Determinants of country embeddedness," Research Policy, Elsevier, vol. 47(7), pages 1198-1214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:73-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.