IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v104y2016icp171-183.html
   My bibliography  Save this article

Electrical circuit analogy for analysis and optimization of absorption energy storage systems

Author

Listed:
  • Zhao, Tian
  • Min, Yong
  • Chen, Qun
  • Hao, Jun-Hong

Abstract

Due to the rapid development of renewable energy and waste energy recovery, absorption energy storage is an important technology with promising future. However, because most researches focus on working fluid flow rather than energy flow used in electric power systems, it is hard to analyze the entire systems as a whole. This contribution introduces the electrical circuit analogy to analyze absorption energy storage systems from the perspective of energy flow. It turns the energy storage and release processes to their corresponding electrical circuits, which are described by Kirchhoff's laws in circuitous philosophy instead of complex component analysis. On this basis, optimization of an absorption energy storage system is converted to a conditional extremum problem, and applying the Lagrange multiplier method offers the optimization equations to directly obtain the optimal structural and operating parameters with the best performance. In this contribution, the optimized results offer 13% and 25% higher power in the storage and release cases, respectively, compared to existing experimental results. Besides, inspired from the batteries connected in parallel and series, the design of a multi-stage absorption energy storage system could store low-grade heat but provide high-grade heat, which further reveals the superior of the newly proposed approach.

Suggested Citation

  • Zhao, Tian & Min, Yong & Chen, Qun & Hao, Jun-Hong, 2016. "Electrical circuit analogy for analysis and optimization of absorption energy storage systems," Energy, Elsevier, vol. 104(C), pages 171-183.
  • Handle: RePEc:eee:energy:v:104:y:2016:i:c:p:171-183
    DOI: 10.1016/j.energy.2016.03.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630367X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N’Tsoukpoe, K. Edem & Le Pierrès, Nolwenn & Luo, Lingai, 2012. "Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system," Energy, Elsevier, vol. 37(1), pages 346-358.
    2. Sheridan, N.R. & Kaushik, S.C., 1981. "A novel latent heat storage for solar space heating systems: Refrigerant storage," Applied Energy, Elsevier, vol. 9(3), pages 165-172, November.
    3. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    4. Li, Z. F. & Sumathy, K., 2000. "Technology development in the solar absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(3), pages 267-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidović, Danko & Sutlović, Elis & Majstrović, Matislav, 2019. "Steady state analysis and modeling of the gas compressor station using the electrical analogy," Energy, Elsevier, vol. 166(C), pages 307-317.
    2. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    3. Tian Zhao & Di Liu & Ke-Lun He & Xi Chen & Qun Chen, 2020. "An Integrated Three-Level Synergetic and Reliable Optimization Method Considering Heat Transfer Process, Component, and System," Energies, MDPI, vol. 13(16), pages 1-19, August.
    4. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    5. Wang, Zhe & Cao, Menglong & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "A global heat flow topology for revealing the synergistic effects of heat transfer and thermal power conversion in large scale systems: Methodology and case study," Energy, Elsevier, vol. 290(C).
    6. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
    7. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A hierarchical and categorized algorithm for efficient and robust simulation of thermal systems based on the heat current method," Energy, Elsevier, vol. 215(PA).
    8. Wang, Lingshi & Liu, Xiaobing & Yang, Zhiyao & Gluesenkamp, Kyle R., 2020. "Experimental study on a novel three-phase absorption thermal battery with high energy density applied to buildings," Energy, Elsevier, vol. 208(C).
    9. Zhao, Tian & Chen, Xi & He, Ke-Lun & Chen, Qun, 2021. "A standardized modeling strategy for heat current method-based analysis and simulation of thermal systems," Energy, Elsevier, vol. 217(C).
    10. Xin, Yong-Lin & Sun, Qing-Han & Zhao, Tian & Li, Xia & Chen, Qun, 2023. "A categorized and decomposed algorithm for thermal system simulation based on generalized benders decomposition," Energy, Elsevier, vol. 282(C).
    11. Gou, Xing & Chen, Qun & Sun, Yong & Ma, Huan & Li, Bao-Ju, 2021. "Holistic analysis and optimization of distributed energy system considering different transport characteristics of multi-energy and component efficiency variation," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    2. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    3. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    4. Noro, M. & Lazzarin, R.M., 2014. "Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions," Energy, Elsevier, vol. 73(C), pages 453-464.
    5. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    6. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    7. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    8. Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).
    9. Wenpu Wang & Wei Shao & Shuo Wang & Junling Liu & Kun Shao & Zhuoqun Cao & Yu Liu & Zheng Cui, 2023. "Operation Optimization of Thermal Management System of Deep Metal Mine Based on Heat Current Method and Prediction Model," Energies, MDPI, vol. 16(18), pages 1-21, September.
    10. Le Pierrès, Nolwenn & Huaylla, Fredy & Stutz, Benoit & Perraud, Julien, 2017. "Long-term solar heat storage process by absorption with the KCOOH/H2O couple: Experimental investigation," Energy, Elsevier, vol. 141(C), pages 1313-1323.
    11. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    12. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    13. Agyenim, Francis & Eames, Philip & Smyth, Mervyn, 2011. "Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling syst," Renewable Energy, Elsevier, vol. 36(1), pages 108-117.
    14. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    15. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    16. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    17. Pang, S.C. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A., 2013. "Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 836-847.
    18. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    19. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
    20. N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:104:y:2016:i:c:p:171-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.