IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp148-160.html
   My bibliography  Save this article

Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection

Author

Listed:
  • Pan, Chunjian
  • Chávez, Oscar
  • Romero, Carlos E.
  • Levy, Edward K.
  • Aguilar Corona, Alicia
  • Rubio-Maya, Carlos

Abstract

A study was conducted to assess the feasibility of using supercritical carbon dioxide injection for heat mining from geothermal reservoirs in Mexico. Traditional water-based geothermal systems require significant amounts of water, a high permeability and porous formation, and sufficiently high subsurface temperatures. sCO2 (Supercritical CO2) is recognized to have good mobility and flow properties for heat recovery from geothermal reservoirs. Estimations of heat mining potential using sCO2 were performed using the TOUGH2 computer software. Simulations for three representative reservoirs in Mexico, Acoculco (Hot Dry Rock-HDR), Puruándiro (Deep Saline Aquifer-DSA) and Agua Caliente Comondú (Low Enthalpy Reservoir-LER), indicate that CO2-based systems have better heat mining potential than H2O-based systems. Results show enhanced heat extraction rates with sCO2 as high as 160 percent with respect to the H2O-based systems, with the heat mining benefit by sCO2 increasing in inverse proportion to the site subsurface temperature. Additional simulations for twenty-one geothermal sites estimate a total power generation potential with sCO2 of 1161 MWe. This represents a 51.4 percent additional power generation in comparison to water. Moreover, sCO2-based geothermal systems would be able to sequester in these twenty-one geothermal reservoirs (expected 30-year life of the reservoir) approximately 72 million tons of CO2.

Suggested Citation

  • Pan, Chunjian & Chávez, Oscar & Romero, Carlos E. & Levy, Edward K. & Aguilar Corona, Alicia & Rubio-Maya, Carlos, 2016. "Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection," Energy, Elsevier, vol. 102(C), pages 148-160.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:148-160
    DOI: 10.1016/j.energy.2016.02.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    2. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    3. Olasolo, P. & Juárez, M.C. & Morales, M.P. & Olasolo, A. & Agius, M.R., 2018. "Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide as an alternative working fluid," Energy, Elsevier, vol. 157(C), pages 150-161.
    4. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    5. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    6. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Wang, Chang-Long & Cheng, Wen-Long & Nian, Yong-Le & Yang, Lei & Han, Bing-Bing & Liu, Ming-Hou, 2018. "Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration," Energy, Elsevier, vol. 142(C), pages 157-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    2. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    3. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    4. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    5. Bing Bai & Xiaochun Li & Haiqing Wu & Yongsheng Wang & Mingze Liu, 2017. "A methodology for designing maximum allowable wellhead pressure for CO 2 injection: application to the Shenhua CCS demonstration project, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 158-181, February.
    6. Cui, Guodong & Ren, Shaoran & Rui, Zhenhua & Ezekiel, Justin & Zhang, Liang & Wang, Hongsheng, 2018. "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system," Applied Energy, Elsevier, vol. 227(C), pages 49-63.
    7. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    8. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    9. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    10. Zhen Zhao & Guangxiong Qin & Huijuan Chen & Linchao Yang & Songhe Geng & Ronghua Wen & Liang Zhang, 2022. "Numerical Simulation and Economic Evaluation of Wellbore Self-Circulation for Heat Extraction Using Cluster Horizontal Wells," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Cui, Guodong & Pei, Shufeng & Rui, Zhenhua & Dou, Bin & Ning, Fulong & Wang, Jiaqiang, 2021. "Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2," Energy, Elsevier, vol. 217(C).
    12. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    13. Wang, Chang-Long & Cheng, Wen-Long & Nian, Yong-Le & Yang, Lei & Han, Bing-Bing & Liu, Ming-Hou, 2018. "Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration," Energy, Elsevier, vol. 142(C), pages 157-167.
    14. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    15. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    16. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    17. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    18. Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
    19. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:148-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.