IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v81y2015icp98-105.html
   My bibliography  Save this article

Advanced metering policy development and influence structures: The case of Norway

Author

Listed:
  • Inderberg, Tor Håkon

Abstract

Responding to a global trend of installing smart meters Norway has taken a route of full governmental and regulatory coordination. The article maps and analyses the main influences on the developments of Norwegian Advanced Metering policy. Based on 12 interviews and extensive document mapping the Norwegian policy developments are traced from about 1990 to 2014, divided into three phases: Before 2000, between 2000 and 2007, and after 2007. It finds that the main influence and push came from an increasingly united industry sector, fronted by the grid utilities with respective interest organizations. Policy change has been boosted by years of constrained supply, creating incentives for political action. Also developments at the EU level have been important for creating attention for smart meters, while consumer groups have been less influential. The national regulator NVE has adapted its policy process to include external expertise, in particular from the grid companies. The findings confirm that influence into policy processes is a matter of financial and organizational resources and expert knowledge. Of particular policy relevance is the weak organization of private consumer interests into these policy streams, which may be important for further policy development for distributed generation and regulation of private generation activities.

Suggested Citation

  • Inderberg, Tor Håkon, 2015. "Advanced metering policy development and influence structures: The case of Norway," Energy Policy, Elsevier, vol. 81(C), pages 98-105.
  • Handle: RePEc:eee:enepol:v:81:y:2015:i:c:p:98-105
    DOI: 10.1016/j.enpol.2015.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515001007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    2. McHenry, Mark P., 2013. "Technical and governance considerations for advanced metering infrastructure/smart meters: Technology, security, uncertainty, costs, benefits, and risks," Energy Policy, Elsevier, vol. 59(C), pages 834-842.
    3. Darby, Sarah J., 2012. "Metering: EU policy and implications for fuel poor households," Energy Policy, Elsevier, vol. 49(C), pages 98-106.
    4. Di Castelnuovo, Matteo & Fumagalli, Elena, 2013. "An assessment of the Italian smart gas metering program," Energy Policy, Elsevier, vol. 60(C), pages 714-721.
    5. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    6. Jennings, Mark G., 2013. "A smarter plan? A policy comparison between Great Britain and Ireland's deployment strategies for rolling out new metering technologies," Energy Policy, Elsevier, vol. 57(C), pages 462-468.
    7. Römer, Benedikt & Reichhart, Philipp & Kranz, Johann & Picot, Arnold, 2012. "The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities," Energy Policy, Elsevier, vol. 50(C), pages 486-495.
    8. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chamaret, Cécile & Steyer, Véronique & Mayer, Julie C., 2020. "“Hands off my meter!” when municipalities resist smart meters: Linking arguments and degrees of resistance," Energy Policy, Elsevier, vol. 144(C).
    2. Geels, F.W. & Sareen, S & Hook, A. & Sovacool, B.K., 2021. "Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000-2019)," Research Policy, Elsevier, vol. 50(7).
    3. Nikolaidis, Alexandros I. & Charalambous, Charalambos A., 2017. "Hidden financial implications of the net energy metering practice in an isolated power system: Critical review and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 706-717.
    4. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    5. Siddharth Sareen, 2020. "Social and technical differentiation in smart meter rollout: embedded scalar biases in automating Norwegian and Portuguese energy infrastructure," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    6. Gordon Rausser & Wadim Strielkowski & Dalia Å treimikienÄ—, 2018. "Smart meters and household electricity consumption: A case study in Ireland," Energy & Environment, , vol. 29(1), pages 131-146, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    2. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    3. Chamaret, Cécile & Steyer, Véronique & Mayer, Julie C., 2020. "“Hands off my meter!” when municipalities resist smart meters: Linking arguments and degrees of resistance," Energy Policy, Elsevier, vol. 144(C).
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    6. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    7. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    8. Chawla, Yash & Kowalska-Pyzalska, Anna & Skowrońska-Szmer, Anna, 2020. "Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences," Energy Policy, Elsevier, vol. 146(C).
    9. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    11. Chou, Jui-Sheng & Kim, Changwan & Ung, Thanh-Khiet & Yutami, I Gusti Ayu Novi & Lin, Guo-Tai & Son, Hyojoo, 2015. "Cross-country review of smart grid adoption in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 192-213.
    12. Craig Garthwaite & Tal Gross & Matthew J. Notowidigdo, 2014. "Public Health Insurance, Labor Supply, and Employment Lock," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(2), pages 653-696.
    13. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    14. Tarek Roshdy Gebba & Mohamed Gamal Aboelmaged, 2016. "Corporate Governance of UAE Financial Institutions: A Comparative Study between Conventional and Islamic Banks," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(5), pages 1-7.
    15. Clarete, Ramon L. & Villamil, Isabela Rosario G., 2015. "Readiness of the Philippine Agriculture and Fisheries Sectors for the 2015 ASEAN Economic Community: A Rapid Appraisal," Research Paper Series DP 2015-43, Philippine Institute for Development Studies.
    16. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    17. Alleyne, Dillon & Emanuel, Elizabeth & Phillips, Willard, 2013. "An assessment of fiscal and regulatory barriers to the deployment of energy efficiency and renewable energy technologies in Saint Lucia," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38502, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Cristian Pana, 2013. "The National Central Bank’S Management Of Reserve Requirements," Working papers 16, Ecological University of Bucharest, Department of Economics.
    19. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:81:y:2015:i:c:p:98-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.