IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3293-d239999.html
   My bibliography  Save this article

Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland

Author

Listed:
  • Jukka Luhas

    (Sustainability Science, School of Energy Systems, LUT University, FI-53851 Lappeenranta, Finland)

  • Mirja Mikkilä

    (Sustainability Science, School of Energy Systems, LUT University, FI-53851 Lappeenranta, Finland)

  • Ville Uusitalo

    (Sustainability Science, School of Energy Systems, LUT University, Saimaankatu 11, 15140 Lahti, Finland)

  • Lassi Linnanen

    (Sustainability Science, School of Energy Systems, LUT University, Saimaankatu 11, 15140 Lahti, Finland)

Abstract

The forest-based bioproduct field has diversified into the chemical, medical, energy, nanoproduct, and construction material sectors. This paper argues that forest-based bioeconomy has kept the focus on conventional products and new bioproducts have primarily been developed as extensions to existing product portfolios due to a lock-in mechanism, i.e., a state where an economy gradually locks itself to a dominant market position due to technical interrelatedness, economies of scale, and quasi-irreversibility of investment. The study examines forest-based product transition in the context of lock-in mechanisms through narrative analysis over the past 170 years. A theoretical framework is formulated based on complex system studies and the economics of lock-in mechanisms. The relation between the lock-in mechanisms of the regime and product diversification is described for the forest-based bioeconomy in Finland. The study supports previous findings indicating that interactions occur between the lock-in mechanisms. Furthermore, lock-in mechanisms can have a neutral, adverse, or beneficial effect on product diversification. The paper extends knowledge about the role and functioning of lock-in mechanisms in changing market environments. Recent trends in network development and foreign investment, and their effects on industrial symbiosis and product diversification, is recommendable to consider in future research.

Suggested Citation

  • Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3293-:d:239999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Järvinen, Joonas & Lamberg, Juha-Antti & Pietinalho, Lauri, 2012. "The fall and the fragmentation of national clusters: Cluster evolution in the paper and pulp industry," Journal of Forest Economics, Elsevier, vol. 18(3), pages 218-241.
    2. Lars Coenen & Jerker Moodysson & Hanna Martin, 2015. "Path Renewal in Old Industrial Regions: Possibilities and Limitations for Regional Innovation Policy," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 850-865, May.
    3. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    4. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    5. Peltoniemi, Mirva, 2013. "Mechanisms of capability evolution in the Finnish forest industry cluster," Journal of Forest Economics, Elsevier, vol. 19(2), pages 190-205.
    6. Cristina Páez-Avilés & Frank J. Rijnsoever & Esteve Juanola-Feliu & Josep Samitier, 2018. "Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology," The Journal of Technology Transfer, Springer, vol. 43(2), pages 458-481, April.
    7. Juha‐Antti Lamberg & Juha Laurila & Tomi Nokelainen, 2017. "Institutional Path Dependence in Competitive Dynamics: The Case of Paper Industries in Finland and the USA," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 38(7), pages 971-991, October.
    8. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    9. Pierson, Paul, 2000. "Increasing Returns, Path Dependence, and the Study of Politics," American Political Science Review, Cambridge University Press, vol. 94(2), pages 251-267, June.
    10. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    11. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    12. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    13. Cowan, Robin, 1990. "Nuclear Power Reactors: A Study in Technological Lock-in," The Journal of Economic History, Cambridge University Press, vol. 50(3), pages 541-567, September.
    14. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    15. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    16. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    17. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    18. Jaana Korhonen & Alexandru Giurca & Maria Brockhaus & Anne Toppinen, 2018. "Actors and Politics in Finland’s Forest-Based Bioeconomy Network," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    19. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    20. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusanen, Katri & Hujala, Teppo & Pykäläinen, Jouni, 2024. "Research approaches to sustainable forest-based value creation: A literature review," Forest Policy and Economics, Elsevier, vol. 163(C).
    2. Luhas, Jukka & Mikkilä, Mirja & Kylkilahti, Eliisa & Miettinen, Jenni & Malkamäki, Arttu & Pätäri, Satu & Korhonen, Jaana & Pekkanen, Tiia-Lotta & Tuppura, Anni & Lähtinen, Katja & Autio, Minna & Linn, 2021. "Pathways to a forest-based bioeconomy in 2060 within policy targets on climate change mitigation and biodiversity protection," Forest Policy and Economics, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    2. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    3. Timothy J. Foxon, 2014. "Technological lock-in and the role of innovation," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 20, pages 304-316, Edward Elgar Publishing.
    4. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    5. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    6. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.
    7. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    8. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    9. Safarzyńska, Karolina & Frenken, Koen & van den Bergh, Jeroen C.J.M., 2012. "Evolutionary theorizing and modeling of sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 1011-1024.
    10. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    11. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    13. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    14. Rebekah Brown & Richard Ashley & Megan Farrelly, 2011. "Political and Professional Agency Entrapment: An Agenda for Urban Water Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4037-4050, December.
    15. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    16. van der Vleuten, Erik & Raven, Rob, 2006. "Lock-in and change: Distributed generation in Denmark in a long-term perspective," Energy Policy, Elsevier, vol. 34(18), pages 3739-3748, December.
    17. Lettice, Fiona & Smart, Palie & Baruch, Yehuda & Johnson, Mark, 2012. "Navigating the impact-innovation double hurdle: The case of a climate change research fund," Research Policy, Elsevier, vol. 41(6), pages 1048-1057.
    18. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    19. Lachman, Daniël A., 2013. "A survey and review of approaches to study transitions," Energy Policy, Elsevier, vol. 58(C), pages 269-276.
    20. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3293-:d:239999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.