IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp168-180.html
   My bibliography  Save this article

Assessment of selected CCS technologies in electricity and synthetic fuel production for CO2 mitigation in South Africa

Author

Listed:
  • Telsnig, Thomas
  • Tomaschek, Jan
  • Özdemir, Enver Doruk
  • Bruchof, David
  • Fahl, Ulrich
  • Eltrop, Ludger

Abstract

One of the actions proposed to reduce greenhouse gas (GHG) emissions in South Africa (SA) is to install carbon capture and storage (CCS) at new energy-producing plants. This paper aims to evaluate the costs and GHG emissions of implementing CCS at a coal-fired integrated gasification combined cycle (IGCC) power plant, at a coal fired ultra-supercritical (USC) power plant, at a synthetic fuel coal-to-liquid (CTL) plant and at a gas-to-liquid (GTL) plant for SA. The approach for comparing of these CCS applications is based on a combination of a techno-economic analysis with a life-cycle assessment. As expected, the generating costs in plants with CCS are higher than without CCS for all case studies. GHG-abatement costs in 2040 are shown to be the lowest for the IGCC power plant at 173 ZAR07/t CO2eq, followed by the USC power plant at 227 ZAR07/t CO2eq. These costs are considerably higher for the CTL and GTL plants. The results show that from an economic perspective, CCS might be an attractive option for CO2 mitigation in SA especially for the electricity sector. However, a prerequisite for the implementation of CCS is that the technology reaches commercial scale for the investigated options and is socially accepted.

Suggested Citation

  • Telsnig, Thomas & Tomaschek, Jan & Özdemir, Enver Doruk & Bruchof, David & Fahl, Ulrich & Eltrop, Ludger, 2013. "Assessment of selected CCS technologies in electricity and synthetic fuel production for CO2 mitigation in South Africa," Energy Policy, Elsevier, vol. 63(C), pages 168-180.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:168-180
    DOI: 10.1016/j.enpol.2013.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    2. Fischedick, Manfred & Esken, Andrea & Luhmann, Hans-Jochen & Schüwer, Dietmar & Supersberger, Nikolaus, 2007. "Geologische CO2-Speicherung als klimapolitische Handlungsoption: Technologien, Konzepte, Perspektiven," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 35, number 35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Viebahn & Daniel Vallentin & Samuel Höller, 2015. "Integrated Assessment of Carbon Capture and Storage (CCS) in South Africa’s Power Sector," Energies, MDPI, vol. 8(12), pages 1-27, December.
    2. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    3. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    4. Xiping Wang & Hongdou Zhang, 2018. "Optimal design of carbon tax to stimulate CCS investment in China's coal‐fired power plants: A real options analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 863-875, October.
    5. Xiaocun Zhang & Qiwen Zhu & Xueqi Zhang, 2023. "Carbon Emission Intensity of Final Electricity Consumption: Assessment and Decomposition of Regional Power Grids in China from 2005 to 2020," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    6. Zongguo Wen & Xuan Zhang & Xuewei Yu & Jinghan Di, 2015. "Technology options for reducing CO 2 in China's electricity sector in 2010–2030: From the perspective of internal and social costs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 772-785, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    2. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    3. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    4. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    5. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    6. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    7. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    8. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    9. Giacchetta, Giancarlo & Leporini, Mariella & Marchetti, Barbara, 2015. "Economic and environmental analysis of a Steam Assisted Gravity Drainage (SAGD) facility for oil recovery from Canadian oil sands," Applied Energy, Elsevier, vol. 142(C), pages 1-9.
    10. Seddighi, Sadegh, 2017. "Design of large scale oxy-fuel fluidized bed boilers: Constant thermal power and constant furnace size scenarios," Energy, Elsevier, vol. 118(C), pages 1286-1294.
    11. López, R. & Menéndez, M. & Fernández, C. & Bernardo-Sánchez, A., 2018. "The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants," Energy, Elsevier, vol. 148(C), pages 571-584.
    12. Luo, Yimo & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing & Yang, Hongxing, 2014. "Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 133(C), pages 127-134.
    13. Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
    14. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    15. Xu, Gang & Xu, Cheng & Yang, Yongping & Fang, Yaxiong & Zhou, Luyao & Zhang, Kai, 2014. "Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant," Applied Energy, Elsevier, vol. 134(C), pages 363-373.
    16. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    17. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    18. Bartela, Łukasz & Skorek-Osikowska, Anna & Kotowicz, Janusz, 2014. "Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation," Energy, Elsevier, vol. 64(C), pages 513-523.
    19. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.
    20. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.

    More about this item

    Keywords

    CCS; CO2 mitigation; LCA; Abatement costs;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:168-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.