IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v60y2013icp396-405.html
   My bibliography  Save this article

Co-firing in coal power plants and its impact on biomass feedstock availability

Author

Abstract

Several states have a renewable portfolio standard (RPS) and allow for biomass co-firing to meet the RPS requirements. In addition, a federal renewable fuel standard (RFS) mandates an increase in cellulosic ethanol production over the next decade. This paper quantifies the effects on local biomass supply and demand of different co-firing policies imposed on 398 existing coal-fired power plants. Our model indicates which counties are most likely to be able to sustain cellulosic ethanol plants in addition to co-firing electric utilities. The simulation incorporates the county-level biomass market of corn stover, wheat straw, switchgrass, and forest residues as well as endogenous crop prices. Our scenarios indicate that there is sufficient feedstock availability in Southern Minnesota, Iowa, and Central Illinois. Significant supply shortages are observed in Eastern Ohio, Western Pennsylvania, and the tri-state area of Illinois, Indiana, and Kentucky which are characterized by a high density of coal-fired power plants with high energy output.

Suggested Citation

  • Dumortier, Jerome, 2013. "Co-firing in coal power plants and its impact on biomass feedstock availability," Energy Policy, Elsevier, vol. 60(C), pages 396-405.
  • Handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:396-405
    DOI: 10.1016/j.enpol.2013.05.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.05.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Burton C. English & Cameron Short & Earl O. Heady, 1981. "The Economic Feasibility of Crop Residues as Auxiliary Fuel in Coal-Fired Power Plants," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(4), pages 636-644.
    2. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Izaurralde, R. Cesar & Manowitz, David H. & Zhang, Xuesong, 2011. "Biomass Supply from Alternative Cellulosic Crops and Crop Residues: A Spatial Bioeconomic Modeling Approach," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103435, Agricultural and Applied Economics Association.
    3. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    4. Mindy L. Mallory & Dermot J. Hayes & Bruce A. Babcock, 2011. "Crop-Based Biofuel Production with Acreage Competition and Uncertainty," Land Economics, University of Wisconsin Press, vol. 87(4), pages 610-627.
    5. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    6. Basu, Prabir & Butler, James & Leon, Mathias A., 2011. "Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants," Renewable Energy, Elsevier, vol. 36(1), pages 282-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian, Hui & Colson, Gregory & Mei, Bin & Wetzstein, Michael E., 2015. "Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis," Energy Policy, Elsevier, vol. 81(C), pages 106-116.
    2. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    3. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    4. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    5. Jerome Dumortier & Amani Elobeid, 2020. "Assessment of Carbon Tax Policies: Implications on U.S. Agricultural Production and Farm Income," Center for Agricultural and Rural Development (CARD) Publications 20-wp606, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    7. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    8. Hossain, A. K. M. Nurul & Serletis, Apostolos, 2020. "Biofuel substitution in the U.S. transportation sector," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    9. Anthony Oliver & Madhu Khanna, 2018. "The spatial distribution of welfare costs of Renewable Portfolio Standards in the United States electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 269-287, October.
    10. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    2. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    3. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    4. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Izaurralde, R. César & Manowitz, David H. & Zhang, Xuesong, 2013. "Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations," Energy Policy, Elsevier, vol. 57(C), pages 518-531.
    5. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2016. "Modeling biomass procurement tradeoffs within a cellulosic biofuel cost model," Energy Economics, Elsevier, vol. 58(C), pages 77-83.
    6. Dumortier, Jerome, 2012. "Biomass Cofiring in Coal Power Plants and its Impact on Agriculture in the United States," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124944, Agricultural and Applied Economics Association.
    7. Scott M. Swinton & Felix Dulys & Sarah S.H. Klammer, 2021. "Why Biomass Residue Is Not as Plentiful as It Looks: Case Study on Economic Supply of Logging Residues," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1003-1025, September.
    8. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Supply with Heterogeneous Biomass Suppliers: An Application to Switchgrass-based Ethanol," Staff General Research Papers Archive 36359, Iowa State University, Department of Economics.
    9. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2015. "Uncertainty and Time-to-Build in Bioenergy Crop Production," ISU General Staff Papers 201501010800001019, Iowa State University, Department of Economics.
    10. Skevas, T. & Swinton, S.M. & Meehan, T.D. & Kim, T.N. & Gratton, C. & Egbendewe-Mondzozo, A., 2014. "Integrating agricultural pest biocontrol into forecasts of energy biomass production," Ecological Economics, Elsevier, vol. 106(C), pages 195-203.
    11. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Izaurralde, R. Cesar & Manowitz, David H. & Zhang, Xuesong, 2012. "Maintaining Environmental Quality while Expanding Energy Biomass Production: Policy Simulations from Michigan, USA," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126749, International Association of Agricultural Economists.
    12. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    13. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    14. Wade, Tara & Kurkalova, Lyubov & Secchi, Silvia, 2016. "Modeling Field-Level Conservation Tillage Adoption with Aggregate Choice Data," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    15. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    16. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    17. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    18. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    19. Song, Jingyu & Delgado, Michael & Preckel, Paul & Villoria, Nelson, 2016. "Pixel Level Cropland Allocation and Marginal Impacts of Biophysical Factors," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235327, Agricultural and Applied Economics Association.
    20. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    More about this item

    Keywords

    Switchgrass; Co-firing; Land-use;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:60:y:2013:i:c:p:396-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.