IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v55y2013icp353-361.html
   My bibliography  Save this article

Passenger transport in Nigeria: Environmental and economic analysis with policy recommendations

Author

Listed:
  • Gujba, H.
  • Mulugetta, Y.
  • Azapagic, A.

Abstract

This paper presents the life cycle environmental impacts and economic costs of the passenger transport sector in Nigeria for 2003–2030. Four scenarios are considered: business as usual (BAU); increased use of public transport (buses) at the expense of cars (LOWCAR) and motorcycles (LOWMC), respectively; and high economic growth with increased car ownership and decline of public transport (HICAR). The findings show that for the BAU scenario the life cycle environmental impacts double over the period, despite the assumption of increased fuel and vehicle efficiency of 35% over time. The total fuel costs at the sectoral level increase three times, from US$3.4billion/yr in 2003 to US$9.7 billion in 2030. Increasing the use of buses would reduce the environmental impacts on average by 15–20% compared to BAU; at the same time, the total fuel costs would be 25–30% lower. If the use of cars grows much faster due to a high economic growth as in HICAR, the environmental impacts and fuel costs would increase by 16% and 26%, respectively. These results demonstrate clearly that future transport policy in Nigeria should promote and incentivise public (bus) transport as a much more environmentally and economically sustainable option than transport by cars and motorcycles.

Suggested Citation

  • Gujba, H. & Mulugetta, Y. & Azapagic, A., 2013. "Passenger transport in Nigeria: Environmental and economic analysis with policy recommendations," Energy Policy, Elsevier, vol. 55(C), pages 353-361.
  • Handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:353-361
    DOI: 10.1016/j.enpol.2012.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.
    2. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    3. Sonibare, J.A. & Akeredolu, F.A., 2006. "Natural gas domestic market development for total elimination of routine flares in Nigeria's upstream petroleum operations," Energy Policy, Elsevier, vol. 34(6), pages 743-753, April.
    4. Taoufik Bouachera & Mohammad Mazraati, 2007. "Fuel demand and car ownership modelling in India," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 31(1), pages 27-51, March.
    5. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    2. Giwa, Solomon O. & Nwaokocha, Collins N. & Odufuwa, Bashir O., 2017. "Mitigating gas flare and emission footprints via the implementation of natural gas vehicles in Nigeria," Energy Policy, Elsevier, vol. 111(C), pages 193-203.
    3. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Gupta, Himanshu & Okwu, Modestus, 2019. "Evaluating challenges to implementing eco-innovation for freight logistics sustainability in Nigeria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 288-305.
    4. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    5. Paul Baustert & Tomás Navarrete Gutiérrez & Thomas Gibon & Laurent Chion & Tai-Yu Ma & Gabriel Leite Mariante & Sylvain Klein & Philippe Gerber & Enrico Benetto, 2019. "Coupling Activity-Based Modeling and Life Cycle Assessment—A Proof-of-Concept Study on Cross-Border Commuting in Luxembourg," Sustainability, MDPI, vol. 11(15), pages 1-24, July.
    6. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    7. Umar Muhammad Modibbo & Irfan Ali & Aquil Ahmed, 2021. "Multi-objective optimization modelling for analysing sustainable development goals of Nigeria: Agenda 2030," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9529-9563, June.
    8. Han Hao & Michael Wang & Yan Zhou & Hewu Wang & Minggao Ouyang, 2015. "Levelized costs of conventional and battery electric vehicles in china: Beijing experiences," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1229-1246, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    2. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    3. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
    5. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    6. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    7. Kolbe, Karin, 2019. "Mitigating urban heat island effect and carbon dioxide emissions through different mobility concepts: Comparison of conventional vehicles with electric vehicles, hydrogen vehicles and public transport," Transport Policy, Elsevier, vol. 80(C), pages 1-11.
    8. Umair Hasan & Andrew Whyte & Hamad AlJassmi, 2022. "A Microsimulation Modelling Approach to Quantify Environmental Footprint of Autonomous Buses," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    9. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
    10. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    11. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    12. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    13. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
    14. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    15. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    16. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    17. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    18. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    19. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    20. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:55:y:2013:i:c:p:353-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.