IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v129y2019icp288-305.html
   My bibliography  Save this article

Evaluating challenges to implementing eco-innovation for freight logistics sustainability in Nigeria

Author

Listed:
  • Orji, Ifeyinwa Juliet
  • Kusi-Sarpong, Simonov
  • Gupta, Himanshu
  • Okwu, Modestus

Abstract

Globally, even as environmental protection and sustainability are becoming increasingly important, freight transportation firms are faced with the enormous need to reduce the significant environmental burdens that accrue from transport vehicles. Eco-innovation can aid freight transport firms through fostering sustainable transportation alternatives at best possible costs to ensure effective decision- making for freight logistics sustainability. Yet, freight logistics companies are faced with numerous difficulties when attempting to implement eco-innovation practices along their supply chains. This paper therefore identifies the challenges to implementing eco-innovation practices for freight logistics sustainability to aid management to take informed decisions to overcome these challenges before the environmental burdens become critical. The Best- Worst method is adopted to evaluate and rank these challenges in terms of their relative importance in Nigeria, an emerging economy, which is characterized by increased consumption due to huge population size coupled with government green requirements. The results depict that unavailable funds, lack of clarity on the financial benefits of eco-innovation practices, poor technology infrastructure and reluctant attitude towards eco-innovation practices are the most pressing challenges amongst the challenges faced by Nigeria freight logistics companies. These results will provide insight and guidelines for decision-makers and policymakers in the freight logistics sector who seeks to integrate eco-innovation initiatives to achieve sustainability.

Suggested Citation

  • Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Gupta, Himanshu & Okwu, Modestus, 2019. "Evaluating challenges to implementing eco-innovation for freight logistics sustainability in Nigeria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 288-305.
  • Handle: RePEc:eee:transa:v:129:y:2019:i:c:p:288-305
    DOI: 10.1016/j.tra.2019.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419302459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Himanshu, 2018. "Evaluating service quality of airline industry using hybrid best worst method and VIKOR," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 35-47.
    2. Yenipazarli, Arda, 2017. "To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain," European Journal of Operational Research, Elsevier, vol. 260(2), pages 571-587.
    3. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2013. "Drivers of different types of eco-innovation in European SMEs," Ecological Economics, Elsevier, vol. 92(C), pages 25-33.
    4. Sanni, Maruf, 2018. "Drivers of eco-innovation in the manufacturing sector of Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 303-314.
    5. Gupta, Himanshu & Barua, Mukesh Kumar, 2016. "Identifying enablers of technological innovation for Indian MSMEs using best–worst multi criteria decision making method," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 69-79.
    6. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    7. Tob-Ogu, Abiye & Kumar, Niraj & Cullen, John, 2018. "ICT adoption in road freight transport in Nigeria – A case study of the petroleum downstream sector," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 240-252.
    8. Gujba, H. & Mulugetta, Y. & Azapagic, A., 2013. "Passenger transport in Nigeria: Environmental and economic analysis with policy recommendations," Energy Policy, Elsevier, vol. 55(C), pages 353-361.
    9. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    10. Muñoz-Villamizar, Andrés & Santos, Javier & Montoya-Torres, Jairo R. & Jaca, Carmen, 2018. "Using OEE to evaluate the effectiveness of urban freight transportation systems: A case study," International Journal of Production Economics, Elsevier, vol. 197(C), pages 232-242.
    11. Luthra, Sunil & Mangla, Sachin Kumar & Xu, Lei & Diabat, Ali, 2016. "Using AHP to evaluate barriers in adopting sustainable consumption and production initiatives in a supply chain," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 342-349.
    12. Mahtani, Umesh S. & Garg, Chandra Prakash, 2018. "An analysis of key factors of financial distress in airline companies in India using fuzzy AHP framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 87-102.
    13. Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
    14. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.
    15. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    16. Chang, Yu-Hern & Wong, Kin-Meng, 2012. "Human risk factors associated with runway incursions," Journal of Air Transport Management, Elsevier, vol. 24(C), pages 25-30.
    17. Ren, Jingzheng & Liang, Hanwei & Chan, Felix T.S., 2017. "Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 29-39.
    18. Gungah, Aarti & Emodi, Nnaemeka Vincent & Dioha, Michael O., 2019. "Improving Nigeria's renewable energy policy design: A case study approach," Energy Policy, Elsevier, vol. 130(C), pages 89-100.
    19. Wang, Zhenfeng & Xu, Guangyin & Lin, Ruojue & Wang, Heng & Ren, Jingzheng, 2019. "Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method," Energy, Elsevier, vol. 170(C), pages 1-13.
    20. García-Granero, Eva M. & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2018. "Eco-innovation measurement: A review of firm performance indicators," MPRA Paper 119905, University Library of Munich, Germany.
    21. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    22. Rezaei, Jafar & van Roekel, Wilco S. & Tavasszy, Lori, 2018. "Measuring the relative importance of the logistics performance index indicators using Best Worst Method," Transport Policy, Elsevier, vol. 68(C), pages 158-169.
    23. Mesa-Arango, Rodrigo & Ukkusuri, Satish V., 2015. "Demand clustering in freight logistics networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 36-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taab Ahmad Samad & Rohit Sharma & Kunal K Ganguly & Samuel Fosso Wamba & Geetika Jain, 2023. "Enablers to the adoption of blockchain technology in logistics supply chains: evidence from an emerging economy," Annals of Operations Research, Springer, vol. 327(1), pages 251-291, August.
    2. Kumar, Anish & Mangla, Sachin Kumar & Kumar, Pradeep & Song, Malin, 2021. "Mitigate risks in perishable food supply chains: Learning from COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    4. Anchal Gupta & Rajesh Kumar Singh & Sachin Kr Mangla, 2022. "Evaluation of logistics providers for sustainable service quality: Analytics based decision making framework," Annals of Operations Research, Springer, vol. 315(2), pages 1617-1664, August.
    5. Juliet Orji, Ifeyinwa & Ojadi, Frank & Kalu Okwara, Ukoha, 2022. "The nexus between e-commerce adoption in a health pandemic and firm performance: The role of pandemic response strategies," Journal of Business Research, Elsevier, vol. 145(C), pages 616-635.
    6. Daniela Ambrosino & Anna Sciomachen, 2021. "Impact of Externalities on the Design and Management of Multimodal Logistic Networks," Sustainability, MDPI, vol. 13(9), pages 1-14, April.
    7. Wang, Xueqin & Wong, Yiik Diew & Li, Kevin X. & Yuen, Kum Fai, 2021. "Shipping industry's sustainability communications to public in social media: A longitudinal analysis," Transport Policy, Elsevier, vol. 110(C), pages 123-134.
    8. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).
    9. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    2. Shih-Chia Chang & Ming-Tsang Lu & Mei-Jen Chen & Li-Hua Huang, 2021. "Evaluating the Application of CSR in the High-Tech Industry during the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    3. van de Kaa, Geerten & Janssen, Marijn & Rezaei, Jafar, 2018. "Standards battles for business-to-government data exchange: Identifying success factors for standard dominance using the Best Worst Method," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 182-189.
    4. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    5. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    6. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    7. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model," Sustainability, MDPI, vol. 10(7), pages 1-23, June.
    8. Sangita Choudhary & Anil Kumar & Sunil Luthra & Jose Arturo Garza‐Reyes & Simon Peter Nadeem, 2020. "The adoption of environmentally sustainable supply chain management: Measuring the relative effectiveness of hard dimensions," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3104-3122, December.
    9. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    10. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    11. Penjani Hopkins Nyimbili & Turan Erden, 2021. "Comparative evaluation of GIS-based best–worst method (BWM) for emergency facility planning: perspectives from two decision-maker groups," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1031-1067, January.
    12. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    13. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    14. Dewick, Paul & Maytorena-Sanchez, Eunice & Winch, Graham, 2019. "Regulation and regenerative eco-innovation: the case of extracted materials in the UK," Ecological Economics, Elsevier, vol. 160(C), pages 38-51.
    15. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    16. Larbi-Siaw, Otu & Xuhua, Hu & Owusu, Ebenezer & Owusu-Agyeman, Abigail & Fulgence, Brou Ettien & Frimpong, Samuel Akwasi, 2022. "Eco-innovation, sustainable business performance and market turbulence moderation in emerging economies," Technology in Society, Elsevier, vol. 68(C).
    17. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    18. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    19. Vineet Kaushik & Ashwani Kumar & Himanshu Gupta & Gaurav Dixit, 2022. "Modelling and prioritizing the factors for online apparel return using BWM approach," Electronic Commerce Research, Springer, vol. 22(3), pages 843-873, September.
    20. Osei, Vivian & Bai, Chunguang & Asante-Darko, Disraeli & Quayson, Matthew, 2023. "Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry," Resources Policy, Elsevier, vol. 86(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:129:y:2019:i:c:p:288-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.