IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp916-926.html
   My bibliography  Save this article

Evaluating congestion management in the Dutch electricity transmission grid

Author

Listed:
  • van Blijswijk, Martti J.
  • de Vries, Laurens J.

Abstract

Due to the increase in electricity generation capacity in the Netherlands and a new connection policy, transmission system operator (TSO) TenneT expects a significant increase in congestion in the Dutch transmission grid. To manage this, the Dutch government implemented redispatching, a method which is argued in the literature to potentially impose large congestion costs upon the TSO. A quantitative model of the Dutch electricity system was developed in order to evaluate this method. The outcomes were compared to the performance of three alternative congestion management methods. Regardless of the method, congestion costs were found to be substantially lower than in previous studies. Because combined-cycle gas turbines are the marginal generation technology in almost all cases, the costs of up and down regulation do not differ much. Consequently, the redispatching costs for the TSO are expected to be relatively low, and the opportunities for abuse of market power appear to be limited. While all the evaluated methods are effective and economically efficient, they have significantly different welfare effects. Market splitting creates significantly larger welfare effects than the different varieties of redispatching.

Suggested Citation

  • van Blijswijk, Martti J. & de Vries, Laurens J., 2012. "Evaluating congestion management in the Dutch electricity transmission grid," Energy Policy, Elsevier, vol. 51(C), pages 916-926.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:916-926
    DOI: 10.1016/j.enpol.2012.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lise, Wietze & Hobbs, Benjamin F. & Hers, Sebastiaan, 2008. "Market power in the European electricity market--The impacts of dry weather and additional transmission capacity," Energy Policy, Elsevier, vol. 36(4), pages 1331-1343, April.
    2. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    3. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    4. Ehrenmann, Andreas & Smeers, Yves, 2005. "Inefficiencies in European congestion management proposals," Utilities Policy, Elsevier, vol. 13(2), pages 135-152, June.
    5. Kawann, Cornelia & Sakulin, Manfred, 2000. "Congestion Pricing: Is a Load Flow-Based Pricing Approach Appropriate?," The Electricity Journal, Elsevier, vol. 13(10), pages 21-30, December.
    6. Perez-Arriaga, Ignacio J. & Olmos, Luis, 2005. "A plausible congestion management scheme for the internal electricity market of the European Union," Utilities Policy, Elsevier, vol. 13(2), pages 117-134, June.
    7. Veit, Daniel J. & Weidlich, Anke & Krafft, Jacob A., 2009. "An agent-based analysis of the German electricity market with transmission capacity constraints," Energy Policy, Elsevier, vol. 37(10), pages 4132-4144, October.
    8. Kristiansen, Tarjei, 2007. "Cross-border transmission capacity allocation mechanisms in South East Europe," Energy Policy, Elsevier, vol. 35(9), pages 4611-4622, September.
    9. Lesieutre, Bernard C. & Eto, Joseph H., 2004. "When a Rose Is Not a Rose: A Review of Recent Estimates of Congestion Costs," The Electricity Journal, Elsevier, vol. 17(4), pages 59-73, May.
    10. R.A. Hakvoort & H.P.A. Knops & L.J. De Vries, 2001. "Congestion management in the European electricity system: An evaluation of the alternatives," Competition and Regulation in Network Industries, Intersentia, vol. 2(3), pages 311-352, September.
    11. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    12. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    13. R.A. Hakvoort & L.J. De Vries, 2002. "An economic assessment of congestion management methods for electricity transmission networks," Competition and Regulation in Network Industries, Intersentia, vol. 3(4), pages 425-467, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørndal, Endre & Bjørndal, Mette & Rud, Linda & Alangi, Somayeh Rahimi, 2017. "Market Power Under Nodal and Zonal Congestion Management Techniques," Discussion Papers 2017/14, Norwegian School of Economics, Department of Business and Management Science.
    2. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    3. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    4. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oseni, Musiliu O. & Pollitt, Michael G., 2014. "Institutional arrangements for the promotion of regional integration of electricity markets : international experience," Policy Research Working Paper Series 6947, The World Bank.
    2. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    4. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    5. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    6. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    7. Holmberg, P. & Lazarczyk, E., 2012. "Congestion management in electricity networks: Nodal, zonal and discriminatory pricing," Cambridge Working Papers in Economics 1219, Faculty of Economics, University of Cambridge.
    8. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    9. Rious, Vincent & Glachant, Jean-Michel & Perez, Yannick & Dessante, Philippe, 2008. "The diversity of design of TSOs," Energy Policy, Elsevier, vol. 36(9), pages 3323-3332, September.
    10. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    11. Karhinen, Santtu & Huuki, Hannu, 2020. "How are the long distances between renewable energy sources and load centres reflected in locational marginal prices?," Energy, Elsevier, vol. 210(C).
    12. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    13. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    14. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    15. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    16. Oseni, Musiliu O. & Pollitt, Michael G., 2016. "The promotion of regional integration of electricity markets: Lessons for developing countries," Energy Policy, Elsevier, vol. 88(C), pages 628-638.
    17. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    18. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    19. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    20. Jean-Michel Glachant, 2012. "Regulating Networks in the New Economy," Review of Economics and Institutions, Università di Perugia, vol. 3(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:916-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.