IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p5598-5608.html
   My bibliography  Save this article

Load management for refrigeration systems: Potentials and barriers

Author

Listed:
  • Grein, Arne
  • Pehnt, Martin

Abstract

As a strategy to deal with the increasing intermittent input of renewable energy sources in Germany, the adaptation of power consumption is complementary to power-plant regulation, grid expansion and physical energy storage. One demand sector that promises strong returns for load management efforts is cooling and refrigeration. In these processes, thermal inertia provides a temporal buffer for shifting and adjusting the power consumption of cooling systems. We have conducted an empirical investigation to obtain a detailed and time-resolved bottom-up analysis of load management for refrigeration systems in the city of Mannheim, Germany. We have extrapolated our results to general conditions in Germany. Several barriers inhibit the rapid adoption of load management strategies for cooling systems, including informational barriers, strict compliance with legal cooling requirements, liability issues, lack of technical experience, an inadequate rate of return and organizational barriers. Small commercial applications of refrigeration in the food-retailing and cold storage in hotels and restaurants are particularly promising starting points for intelligent load management. When our results are applied to Germany, suitable sectors for load management have theoretical and achievable potential values of 4.2 and 2.8Â GW, respectively, amounting to about 4-6% of the maximum power demand in Germany.

Suggested Citation

  • Grein, Arne & Pehnt, Martin, 2011. "Load management for refrigeration systems: Potentials and barriers," Energy Policy, Elsevier, vol. 39(9), pages 5598-5608, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5598-5608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511003235
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heitkoetter, Wilko & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2020. "Regionalised heat demand and power-to-heat capacities in Germany – An open dataset for assessing renewable energy integration," Applied Energy, Elsevier, vol. 259(C).
    2. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    3. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    4. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    5. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    6. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    7. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    8. Scharnhorst, L. & Sloot, D. & Lehmann, N. & Ardone, A. & Fichtner, W., 2024. "Barriers to demand response in the commercial and industrial sectors – An empirical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    9. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Yan Wang & Congxianzi Pei & Qiushuo Li & Jingbang Li & Deng Pan & Ciwei Gao, 2020. "Flow Shop Providing Frequency Regulation Service in Electricity Market," Energies, MDPI, vol. 13(7), pages 1-15, April.
    11. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    12. Aaron Praktiknjo, 2016. "The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors," Energies, MDPI, vol. 9(2), pages 1-17, February.
    13. Thimmel, Markus & Fridgen, Gilbert & Keller, Robert & Roevekamp, Patrick, 2019. "Compensating balancing demand by spatial load migration – The case of geographically distributed data centers," Energy Policy, Elsevier, vol. 132(C), pages 1130-1142.
    14. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    15. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    16. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    2. Peter Warren, 2018. "Demand-side policy: Global evidence base and implementation patterns," Energy & Environment, , vol. 29(5), pages 706-731, August.
    3. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    4. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    5. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    6. Beer, Sebastian & Gómez, Tomás & Dallinger, David & Momber, Ilan & Marnay, Chris, 2011. "An economic analysis of used electric vehicle batteries integrated into commercial building microgrids," Working Papers "Sustainability and Innovation" S10/2011, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Adela Conchado & Pedro Linares, 2010. "The Economic Impact of Demand-Response Programs on Power Systems. A survey of the State of the Art," Working Papers 02-2010, Economics for Energy.
    9. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    10. Sahraei-Ardakani, Mostafa & Blumsack, Seth & Kleit, Andrew, 2015. "Estimating zonal electricity supply curves in transmission-constrained electricity markets," Energy, Elsevier, vol. 80(C), pages 10-19.
    11. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    12. Farzamkia, Saleh & Ranjbar, Hossein & Hatami, Alireza & Iman-Eini, Hossein, 2016. "A novel PSO (Particle Swarm Optimization)-based approach for optimal schedule of refrigerators using experimental models," Energy, Elsevier, vol. 107(C), pages 707-715.
    13. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    14. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    15. Feehan, James P., 2018. "The long-run price elasticity of residential demand for electricity: Results from a natural experiment," Utilities Policy, Elsevier, vol. 51(C), pages 12-17.
    16. Shira Horowitz and Lester Lave, 2014. "Equity in Residential Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    17. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2020. "Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators," Applied Energy, Elsevier, vol. 279(C).
    18. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    19. Deng, Shi-Jie & Xu, Li, 2009. "Mean-risk efficient portfolio analysis of demand response and supply resources," Energy, Elsevier, vol. 34(10), pages 1523-1529.
    20. Manuel Frondel and Gerhard Kussel, 2019. "Switching on Electricity Demand Response: Evidence for German Households," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5598-5608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.