IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i5p2255-2261.html
   My bibliography  Save this article

A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

Author

Listed:
  • Vijay, Samudra
  • DeCarolis, Joseph F.
  • Srivastava, Ravi K.

Abstract

This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology cost and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NOx control configurations on a large subset of the existing coal-fired, utility-owned boilers in the US. The resultant data are used to create technology-specific marginal abatement cost curves (MACCs) and also serve as input to an integer linear program, which minimizes system-wide control costs by finding the optimal distribution of NOx controls across the modeled boilers under an emission constraint. The result is a single optimized MACC that accounts for detailed, boiler-specific information related to NOx retrofits. Because the resultant MACCs do not take into account regional differences in air-quality standards or pre-existing NOx controls, the results should not be interpreted as a policy prescription. The general method as well as NOx-specific results presented here should be of significant value to modelers and policy analysts who must estimate the costs of pollution reduction.

Suggested Citation

  • Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2255-2261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00951-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raymond Hartman & David Wheeler & Manjula Singh, 1997. "The cost of air pollution abatement," Applied Economics, Taylor & Francis Journals, vol. 29(6), pages 759-774.
    2. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    3. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    4. Hailu, Atakelty & Hailu, Atakelty, 2003. "Pollution abatement and productivity performance of regional Canadian pulp and paper industries," Journal of Forest Economics, Elsevier, vol. 9(1), pages 5-25.
    5. Gollop, Frank M & Roberts, Mark J, 1985. "Cost-minimizing Regulation of Sulfur Emissions: Regional Gains in Electric Power," The Review of Economics and Statistics, MIT Press, vol. 67(1), pages 81-90, February.
    6. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    7. Becker, Randy A., 2005. "Air pollution abatement costs under the Clean Air Act: evidence from the PACE survey," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 144-169, July.
    8. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    9. McKitrick, Ross, 1999. "A Derivation of the Marginal Abatement Cost Curve," Journal of Environmental Economics and Management, Elsevier, vol. 37(3), pages 306-314, May.
    10. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sugathan, Anish & Bhangale, Ritesh & Kansal, Vishal & Hulke, Unmil, 2018. "How can Indian power plants cost-effectively meet the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves," Energy Policy, Elsevier, vol. 121(C), pages 124-137.
    2. Chih Chen, 2015. "Assessing the Pollutant Abatement Cost of Greenhouse Gas Emission Regulation: A Case Study of Taiwan’s Freeway Bus Service Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 477-495, August.
    3. Mekaroonreung, Maethee & Johnson, Andrew L., 2014. "A nonparametric method to estimate a technical change effect on marginal abatement costs of U.S. coal power plants," Energy Economics, Elsevier, vol. 46(C), pages 45-55.
    4. Levihn, F. & Nuur, C. & Laestadius, S., 2014. "Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account," Energy, Elsevier, vol. 76(C), pages 336-344.
    5. Doole, Graeme J., 2012. "Cost-effective policies for improving water quality by reducing nitrate emissions from diverse dairy farms: An abatement–cost perspective," Agricultural Water Management, Elsevier, vol. 104(C), pages 10-20.
    6. Sun, Jian & Schreifels, Jeremy & Wang, Jun & Fu, Joshua S. & Wang, Shuxiao, 2014. "Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China," Energy Policy, Elsevier, vol. 69(C), pages 478-488.
    7. Asha Gunawardena, 2016. "Cost of Controlling Water Pollution and its Impact on Industrial Efficiency," Working Papers id:11537, eSocialSciences.
    8. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailu, Atakelty & Veeman, Terrence S., 2001. "Alternative methods for environmentally adjusted productivity analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 211-218, September.
    2. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    3. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    4. Sugathan, Anish & Bhangale, Ritesh & Kansal, Vishal & Hulke, Unmil, 2018. "How can Indian power plants cost-effectively meet the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves," Energy Policy, Elsevier, vol. 121(C), pages 124-137.
    5. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    6. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    7. Jon Rezek & Benjamin F. Blair, 2005. "Abatement Cost Heterogeneity In Phase I Electric Utilities," Contemporary Economic Policy, Western Economic Association International, vol. 23(3), pages 324-340, July.
    8. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    9. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    10. Hailu, Atakelty & Hailu, Atakelty, 2003. "Pollution abatement and productivity performance of regional Canadian pulp and paper industries," Journal of Forest Economics, Elsevier, vol. 9(1), pages 5-25.
    11. Correa, Juan A. & Gómez, Marcos & Luengo, Andrés & Parro, Francisco, 2021. "Environmental misallocation in the copper industry," Resources Policy, Elsevier, vol. 71(C).
    12. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    13. Haiyan Deng & Ge Bai & Kristiaan Kerstens & Zhiyang Shen, 2023. "Comparing green productivity under convex and nonconvex technologies: Which is a robust approach consistent with energy structure?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(8), pages 4377-4394, December.
    14. Di Maria, Corrado & Zarkovic, Maja & Hintermann, Beat, 2020. "Are Emissions Trading Schemes Cost-effective?," Working papers 2020/13, Faculty of Business and Economics - University of Basel.
    15. Li, Yan & Wei, Yigang & Zhang, Xiaoling & Tao, Yuan, 2020. "Regional and provincial CO2 emission reduction task decomposition of China's 2030 carbon emission peak based on the efficiency, equity and synthesizing principles," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 237-256.
    16. Atakelty Hailu & Robert Chambers, 2012. "A Luenberger soil-quality indicator," Journal of Productivity Analysis, Springer, vol. 38(2), pages 145-154, October.
    17. Jianjun Wang & Li Li & Fan Zhang & Qiannan Xu, 2014. "Carbon Emissions Abatement Cost in China: Provincial Panel Data Analysis," Sustainability, MDPI, vol. 6(5), pages 1-17, May.
    18. Thomas Stoerk, 2017. "Compliance, Efficiency and Instrument Choice: Evidence from air pollution control in China," GRI Working Papers 273, Grantham Research Institute on Climate Change and the Environment.
    19. Aiken, Deborah Vaughn & Pasurka, Carl Jr., 2003. "Adjusting the measurement of US manufacturing productivity for air pollution emissions control," Resource and Energy Economics, Elsevier, vol. 25(4), pages 329-351, October.
    20. Myunghun, Lee, 2011. "Potential cost savings from internal/external CO2 emissions trading in the Korean electric power industry," Energy Policy, Elsevier, vol. 39(10), pages 6162-6167, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2255-2261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.