IDEAS home Printed from https://ideas.repec.org/p/ess/wpaper/id11537.html
   My bibliography  Save this paper

Cost of Controlling Water Pollution and its Impact on Industrial Efficiency

Author

Listed:
  • Asha Gunawardena

Abstract

This paper estimates the cost of effluent discharge regulations for firms located in the lower Kelani River catchment in Sri Lanka. The river provides water for many economic purposes including drinking water and avariety of ecosystem services. Employing multi-input and multi-output translog production technology, we estimate shadow prices of effluents and technical efficiency of firms belonging to eight industries. We also compute total abatement cost for firms under different policy scenarios related to simultaneous reduction in concentration of three water pollutants including current regulatory standards. Wide variations in firm and industry shadow prices (marginal abatement costs) provide a strong case for a comprehensive redesign of environmental policy to control water pollution by industries in Sri Lanka. [SANDEE Working Paper No. 112–16].

Suggested Citation

  • Asha Gunawardena, 2016. "Cost of Controlling Water Pollution and its Impact on Industrial Efficiency," Working Papers id:11537, eSocialSciences.
  • Handle: RePEc:ess:wpaper:id:11537
    Note: Institutional Papers
    as

    Download full text from publisher

    File URL: http://www.esocialsciences.org/Download/repecDownload.aspx?fname=A2016122314465_20.pdf&fcategory=Articles&AId=11537&fref=repec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, April.
    2. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    3. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    4. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, September.
    5. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    6. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    7. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    8. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    9. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    10. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    11. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    12. Vijay, Samudra & DeCarolis, Joseph F. & Srivastava, Ravi K., 2010. "A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers," Energy Policy, Elsevier, vol. 38(5), pages 2255-2261, May.
    13. Jintao Xu & William Hyde & Yongjie Ji, 2010. "Effective pollution control policy for China," Journal of Productivity Analysis, Springer, vol. 33(1), pages 47-66, February.
    14. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aparajita Singh & Haripriya Gundimeda, 2021. "Measuring technical efficiency and shadow price of water pollutants for the leather industry in India: a directional distance function approach," Journal of Regulatory Economics, Springer, vol. 59(1), pages 71-93, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    2. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    3. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
    4. Aparajita Singh & Haripriya Gundimeda, 2021. "Measuring technical efficiency and shadow price of water pollutants for the leather industry in India: a directional distance function approach," Journal of Regulatory Economics, Springer, vol. 59(1), pages 71-93, February.
    5. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    6. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    7. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    8. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    9. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Hai-Ying Gu & Qing-Mi Hu & Tian-Qiong Wang, 2019. "Payment for Rice Growers to Reduce Using N Fertilizer in the GHG Mitigation Program Driven by the Government: Evidence from Shanghai," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    11. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    12. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. Rekker, Lennard & Kesina, Michaela & Mulder, Machiel, 2023. "Carbon abatement in the European chemical industry: assessing the feasibility of abatement technologies by estimating firm-level marginal abatement costs," Energy Economics, Elsevier, vol. 126(C).
    14. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    15. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    16. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    17. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    18. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).
    19. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    20. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ess:wpaper:id:11537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Padma Prakash (email available below). General contact details of provider: http://www.esocialsciences.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.