IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i8p3183-3187.html
   My bibliography  Save this article

Potential of practical implementation of rice straw-based power generation in Thailand

Author

Listed:
  • Suramaythangkoor, Tritib
  • Gheewala, Shabbir H.

Abstract

This paper uses life cycle assessment to evaluate the potential of rice straw power plant implementation in Thailand in terms of GHG emission savings from avoided open burning and from implementing rice straw power production, which can substitute that from natural gas. Annually, 8.5-14.3Â Mt rice straw burning contributes 5.0-8.6Â MtCO2-eq which could be converted to 786-1325Â MW of power, yielding a total greenhouse gas (GHG) reduction of 7.8-13.2Â MtCO2-eq. Moreover, 1090-1837Â Mm3 of natural gas could be substituted annually. A total of 25 provinces in central Thailand have potential to generate electricity with a total capacity of 210-292Â MW (plant efficiency 20-27%), resulting in an annual GHG emission savings of 2.3-2.6Â MtCO2-eq, and with a provincial capacity of over 20Â MW in 6 provinces, 10-20Â MW in 7 provinces, 1-10Â MW in 6 provinces and less than 1Â MW in 6 provinces.

Suggested Citation

  • Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2008. "Potential of practical implementation of rice straw-based power generation in Thailand," Energy Policy, Elsevier, vol. 36(8), pages 3183-3187, August.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:3183-3187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00224-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    2. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    3. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    4. Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2010. "Potential alternatives of heat and power technology application using rice straw in Thailand," Applied Energy, Elsevier, vol. 87(1), pages 128-133, January.
    5. Nygaard, Ivan & Dembelé, Filifing & Daou, Ibrahima & Mariko, Adama & Kamissoko, Famakan & Coulibaly, Nanourou & Borgstrøm, Rasmus L. & Bruun, Thilde Beck, 2016. "Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 202-212.
    6. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    7. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    8. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    9. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    10. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    11. Hossain, Mokter, 2017. "Mapping the frugal innovation phenomenon," Technology in Society, Elsevier, vol. 51(C), pages 199-208.
    12. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki & Yamaguchi, Katsunobu, 2013. "Life cycle GHG analysis of rice straw bio-DME production and application in Thailand," Applied Energy, Elsevier, vol. 112(C), pages 560-567.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    2. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    3. Maw Maw Tun & Dagmar Juchelková, 2019. "Biomass Sources and Energy Potential for Energy Sector in Myanmar: An Outlook," Resources, MDPI, vol. 8(2), pages 1-19, May.
    4. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    5. Changbo Wang & Lixiao Zhang & Shuying Yang & Mingyue Pang, 2012. "A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China," Energies, MDPI, vol. 5(8), pages 1-16, July.
    6. Ali, Ghaffar & Nitivattananon, Vilas & Abbas, Sawaid & Sabir, Muazzam, 2012. "Green waste to biogas: Renewable energy possibilities for Thailand's green markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5423-5429.
    7. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. José Antonio Soriano & Reyes García-Contreras & Antonio José Carpio de Los Pinos, 2021. "Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops," Energies, MDPI, vol. 14(13), pages 1-18, June.
    9. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    10. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    11. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    12. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    13. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    14. Meiying Xie & Xiang Cai & Zhengli Xu & Nan Zhou & Dongqing Yan, 2022. "Factors contributing to abandonment of household biogas digesters in rural China: a study of stakeholder perspectives using Q-methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7698-7724, June.
    15. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    16. Smoliński, Adam & Stańczyk, Krzysztof & Howaniec, Natalia, 2010. "Steam gasification of selected energy crops in a fixed bed reactor," Renewable Energy, Elsevier, vol. 35(2), pages 397-404.
    17. Stich, J. & Ramachandran, S. & Hamacher, T. & Stimming, U., 2017. "Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia," Energy, Elsevier, vol. 135(C), pages 930-942.
    18. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    19. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    20. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of bagasse cogeneration in India," Energy Policy, Elsevier, vol. 35(10), pages 4779-4798, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:8:p:3183-3187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.