IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v195y2024ics0301421524004105.html
   My bibliography  Save this article

How do we decarbonize one billion vehicles by 2050? Insights from a comparative life cycle assessment of electrifying light-duty vehicle fleets in the United States, China, and the United Kingdom

Author

Listed:
  • Huo, Da
  • Davies, Ben
  • Li, Jianxin
  • Alzaghrini, Nadine
  • Sun, Xin
  • Meng, Fanran
  • Abdul-Manan, Amir F.N.
  • McKechnie, Jon
  • Posen, I. Daniel
  • MacLean, Heather L.

Abstract

Electrifying light-duty vehicle fleets is essential to decarbonize road transport, however its efficacy relies on policies targeting country-specific challenges and opportunities. We model and compare fleet-level life cycle GHG emissions for different grid scenarios and battery electric vehicle deployment timelines respectively in the US, China, and the UK from 2020 to 2050, cumulatively involving over one billion vehicles. A customized index decomposition analysis is employed to quantify the contributions of key emissions drivers. Results reveal that electrification can be effective for decarbonizing all three fleets, reducing over 50% of annual life cycle emissions by 2050. Priorities and challenges, however, differ across countries: The US fleet, which emits the highest GHGs, generally comprises older, heavier, and less fuel-efficient vehicles, would benefit the most from electrification and fleet modernization. Grid decarbonization and managing car ownership growth are critical for China, as its rapidly growing fleet and manufacturing rely on currently carbon-intensive electricity. The UK needs to expand its electricity generation capacity while electrifying its fleet. We also underscore the need for a comprehensive strategy, including electrification, low GHG intensity fuels, and moderating vehicle ownerships. This study highlights the importance of cross-country life cycle thinking to inform effective decarbonization policy decisions.

Suggested Citation

  • Huo, Da & Davies, Ben & Li, Jianxin & Alzaghrini, Nadine & Sun, Xin & Meng, Fanran & Abdul-Manan, Amir F.N. & McKechnie, Jon & Posen, I. Daniel & MacLean, Heather L., 2024. "How do we decarbonize one billion vehicles by 2050? Insights from a comparative life cycle assessment of electrifying light-duty vehicle fleets in the United States, China, and the United Kingdom," Energy Policy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004105
    DOI: 10.1016/j.enpol.2024.114390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524004105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Alexandre Milovanoff & I. Daniel Posen & Heather L. MacLean, 2020. "Electrification of light-duty vehicle fleet alone will not meet mitigation targets," Nature Climate Change, Nature, vol. 10(12), pages 1102-1107, December.
    3. Hackney, Jeremy & de Neufville, Richard, 2001. "Life cycle model of alternative fuel vehicles: emissions, energy, and cost trade-offs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(3), pages 243-266, March.
    4. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    5. Yang Li & Lu Miao & Ying Chen & Yike Hu, 2019. "Exploration of Sustainable Urban Transportation Development in China through the Forecast of Private Vehicle Ownership," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    6. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    7. Shiqi Ou & Rujie Yu & Zhenhong Lin & Huanhuan Ren & Xin He & Steven Przesmitzki & Jessey Bouchard, 2020. "Intensity and daily pattern of passenger vehicle use by region and class in China: estimation and implications for energy use and electrification," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 307-327, March.
    8. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    9. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    10. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    2. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    3. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 4(12), pages 1-24, December.
    4. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    5. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    6. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    7. Elsenberger, Sebastian, 2023. "Energy Efficiency in the Passenger Transport Sectors of Germany and the Netherlands," MPRA Paper 122147, University Library of Munich, Germany.
    8. GUPTA Monika & SINGH Sanjay, 2016. "Factorizing The Changes In Co2 Emissions From Indian Road Passenger Transport: A Decomposition Analysis," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(3), pages 67-83, December.
    9. Hu, Junfeng & Kahrl, Fredrich & Yan, Qingyou & Wang, Xiaoya, 2012. "The impact of China's differential electricity pricing policy on power sector CO2 emissions," Energy Policy, Elsevier, vol. 45(C), pages 412-419.
    10. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    11. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    12. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    13. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    14. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    15. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    16. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    17. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    18. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    19. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    20. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.