IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v179y2023ics030142152300229x.html
   My bibliography  Save this article

A techno-economic and environmental assessment of a low-carbon power generation system in Cameroon

Author

Listed:
  • Ayuketah, Yvan
  • Gyamfi, Samuel
  • Diawuo, Felix Amankwah
  • Dagoumas, Athanasios S.

Abstract

In attempt to address the power sector issues, provide energy necessary to attain its developmental goals and meet its international commitments, Cameroon has developed several policies and masterplans. However, these policy directives haven't had the desired effect with the issues persisting and the nation falling short of intended milestones. This research analyses the implications of stated and clean energy policies on the future electricity generation system of Cameroon. The study uses the Schwartz's methodology for scenario development and the Low Emissions Analysis Platform (LEAP) to model the reference scenario and three alternative scenarios that describe various policy directives. These scenarios are assessed based on total installed capacity, economic competitiveness, and associated environmental benefits. The results indicate Cameroon's generation capacity in 2045 would need to grow by over 800% under the Reference scenario. This growth would be at a cumulative cost of $3377 million and associated greenhouse gas emissions of 82.6 MTCO2e. Furthermore, only 13.11% renewable energy target would be achieved. The study also shows that higher renewable energy targets result in significant economic and emission savings compared to the Reference scenario. Therefore, Cameroon should reassess its power sector masterplans and intensify efforts to increase uptake of renewables.

Suggested Citation

  • Ayuketah, Yvan & Gyamfi, Samuel & Diawuo, Felix Amankwah & Dagoumas, Athanasios S., 2023. "A techno-economic and environmental assessment of a low-carbon power generation system in Cameroon," Energy Policy, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:enepol:v:179:y:2023:i:c:s030142152300229x
    DOI: 10.1016/j.enpol.2023.113644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152300229X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply–demand in Africa," WIDER Working Paper Series 023, World Institute for Development Economic Research (UNU-WIDER).
    2. Ouedraogo, Nadia S., 2017. "Modeling sustainable long-term electricity supply-demand in Africa," Applied Energy, Elsevier, vol. 190(C), pages 1047-1067.
    3. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    4. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    5. Chu Donatus Iweh & Samuel Gyamfi & Emmanuel Tanyi & Eric Effah-Donyina, 2021. "Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits," Energies, MDPI, vol. 14(17), pages 1-34, August.
    6. Awopone, Albert K. & Zobaa, Ahmed F. & Banuenumah, Walter, 2017. "Techno-economic and environmental analysis of power generation expansion plan of Ghana," Energy Policy, Elsevier, vol. 104(C), pages 13-22.
    7. World Bank, "undated". "State and Trends of Carbon Pricing 2020 [Situación y tendencias de la fijación del precio al carbono 2020]," World Bank Publications - Reports 33809, The World Bank Group.
    8. Nadia Singh & Richard Nyuur & Ben Richmond, 2019. "Renewable Energy Development as a Driver of Economic Growth: Evidence from Multivariate Panel Data Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    10. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    11. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply-demand in Africa," WIDER Working Paper Series wp-2017-23, World Institute for Development Economic Research (UNU-WIDER).
    12. Aliyu, Abubakar Sadiq & Ramli, Ahmad Termizi & Saleh, Muneer Aziz, 2013. "Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications," Energy, Elsevier, vol. 61(C), pages 354-367.
    13. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    2. Bissiri, Mounirah & Pereira da Silva, Patrícia & Moura, Pedro & Figueiredo, Nuno Carvalho, 2024. "Are West Africa's policy, planning, and regulatory frameworks missing the harmonization piece of the power pooling-renewable energy puzzle?," Energy Policy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dioha, Michael O. & Kumar, Atul, 2020. "Exploring the energy system impacts of Nigeria's Nationally Determined Contributions and low-carbon transition to mid-century," Energy Policy, Elsevier, vol. 144(C).
    2. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    3. Padi, Richard Kingsley & Chimphango, Annie, 2021. "Assessing the potential of integrating cassava residues-based bioenergy into national energy mix using long-range Energy Alternatives Planning systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Trotter, Philipp A. & Maconachie, Roy & McManus, Marcelle C., 2018. "Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network," Energy Policy, Elsevier, vol. 117(C), pages 108-126.
    5. Mounir, Adil & Mascaro, Giuseppe & White, Dave D., 2019. "A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus," Applied Energy, Elsevier, vol. 256(C).
    6. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    7. Bissiri, Mounirah & Moura, Pedro & Perez, Ricardo Cunha & Figueiredo, Nuno Carvalho & da Silva, Patrícia Pereira, 2024. "Generation capacity expansion planning with spatially-resolved electricity demand and increasing variable renewable energy supply: Perspectives from power pooling in West Africa," Applied Energy, Elsevier, vol. 364(C).
    8. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    9. Malka, Lorenc & Bidaj, Flamur & Kuriqi, Alban & Jaku, Aldona & Roçi, Rexhina & Gebremedhin, Alemayehu, 2023. "Energy system analysis with a focus on future energy demand projections: The case of Norway," Energy, Elsevier, vol. 272(C).
    10. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    11. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    12. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    13. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Electricity Consumption and Population Growth in South Africa: A Panel Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 374-383, May.
    14. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    15. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    16. Bissiri, M. & Moura, P. & Figueiredo, N.C. & Silva, P.P., 2020. "Towards a renewables-based future for West African States: A review of power systems planning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Hlongwane, Nyiko Worship & Daw, Olebogeng David, 2022. "Electricity consumption and population growth in South Africa: A panel approach," MPRA Paper 113828, University Library of Munich, Germany.
    18. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Renewable Electricity Consumption and Economic Growth: A Comparative Study of South Africa and Zimbabwe," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 197-206, May.
    19. Munyanyi, Musharavati Ephraim & Awaworyi Churchill, Sefa, 2022. "Foreign aid and energy poverty: Sub-national evidence from Senegal," Energy Economics, Elsevier, vol. 108(C).
    20. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:179:y:2023:i:c:s030142152300229x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.