IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v168y2022ics0301421522003615.html
   My bibliography  Save this article

Implications of heating sector electrification on the Irish power system in view of the Climate Action Plan

Author

Listed:
  • Gaur, Ankita Singh
  • Fitiwi, Desta Z.
  • Lynch, Muireann
  • Longoria, Genaro

Abstract

Electrifying the heating sector, which is energy and carbon intensive, and shifting electricity supply to renewable technologies is one of the main policy options being pursued for decarbonisation of the heating sector. Heat pumps are widely adopted for this purpose. However, the impact of this policy on existing electrical systems, both from the perspectives of supply and demand, is understudied in the literature. This paper examines the system-wide impacts of integrating high quantities of heat pumps, in line with government targets, in Ireland. We provide a broad discussion of the ramifications of heating sector electrification in terms of system costs and expansion planning under renewable energy targets. Results reveal significant changes in generation and increases in associated costs with increasing levels of electrification. On the flip side, the heating sector electrification leads to more efficient utilisation of renewable energy and the transmission network. We also explore alternative policy pathways to minimize impacts on the system. These include determining optimal locations for heat pump integration and a technology-neutral emission reduction target. Optimal distribution of heat pumps has a low impact on system metrics whereas pursuing an emission reduction target makes a large impact on system costs.

Suggested Citation

  • Gaur, Ankita Singh & Fitiwi, Desta Z. & Lynch, Muireann & Longoria, Genaro, 2022. "Implications of heating sector electrification on the Irish power system in view of the Climate Action Plan," Energy Policy, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003615
    DOI: 10.1016/j.enpol.2022.113136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    2. Young, David & Bistline, John, 2018. "The costs and value of renewable portfolio standards in meeting decarbonization goals," Energy Economics, Elsevier, vol. 73(C), pages 337-351.
    3. Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
    4. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    5. Lowes, Richard & Woodman, Bridget, 2020. "Disruptive and uncertain: Policy makers’ perceptions on UK heat decarbonisation," Energy Policy, Elsevier, vol. 142(C).
    6. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    7. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    8. Boris Delač & Branimir Pavković & Marino Grozdek & Luka Bezić, 2022. "Cost Optimal Renewable Electricity-Based HVAC System: Application of Air to Water or Water to Water Heat Pump," Energies, MDPI, vol. 15(5), pages 1-21, February.
    9. Lu, Qi & Narsilio, Guillermo A. & Aditya, Gregorius Riyan & Johnston, Ian W., 2017. "Economic analysis of vertical ground source heat pump systems in Melbourne," Energy, Elsevier, vol. 125(C), pages 107-117.
    10. Lu, Liwei & Preckel, Paul V. & Gotham, Douglas & Liu, Andrew L., 2016. "An assessment of alternative carbon mitigation policies for achieving the emissions reduction of the Clean Power Plan: Case study for the state of Indiana," Energy Policy, Elsevier, vol. 96(C), pages 661-672.
    11. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    12. Fagiani, Riccardo & Richstein, Jörn C. & Hakvoort, Rudi & De Vries, Laurens, 2014. "The dynamic impact of carbon reduction and renewable support policies on the electricity sector," Utilities Policy, Elsevier, vol. 28(C), pages 28-41.
    13. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    14. Bird, Lori & Chapman, Caroline & Logan, Jeff & Sumner, Jenny & Short, Walter, 2011. "Evaluating renewable portfolio standards and carbon cap scenarios in the U.S. electric sector," Energy Policy, Elsevier, vol. 39(5), pages 2573-2585, May.
    15. Neves, Rebecca & Cho, Heejin & Zhang, Jian, 2021. "State of the nation: Customizing energy and finances for geothermal technology in the United States residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luciano De Tommasi & Pádraig Lyons, 2022. "Towards the Integration of Flexible Green Hydrogen Demand and Production in Ireland: Opportunities, Barriers, and Recommendations," Energies, MDPI, vol. 16(1), pages 1-32, December.
    2. Brown, Alastair & Hampton, Harrison & Foley, Aoife & Furszyfer Del Rio, Dylan & Lowans, Christopher & Caulfield, Brian, 2023. "Understanding domestic consumer attitude and behaviour towards energy: A study on the Island of Ireland," Energy Policy, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    2. Plaga, Leonie Sara & Lynch, Muireann & Curtis, John & Bertsch, Valentin, 2024. "How public acceptance affects power system development—A cross-country analysis for wind power," Applied Energy, Elsevier, vol. 359(C).
    3. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    4. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    5. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    6. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    7. Lynch, Muireann Á. & Longoria, Genora & Curtis, John, 2021. "Future market design options for electricity markets with high RES-E: lessons from the Irish Single Electricity Market," Papers WP702, Economic and Social Research Institute (ESRI).
    8. Lynch, Muireann & Longoria, Genaro & Curtis, John, 2021. "Market design options for electricity markets with high variable renewable generation," Utilities Policy, Elsevier, vol. 73(C).
    9. Bertsch, Valentin & Di Cosmo, Valeria, 2020. "Are renewables profitable in 2030 and do they reduce carbon emissions effectively? A comparison across Europe," MPRA Paper 101822, University Library of Munich, Germany.
    10. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.
    11. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.
    12. Ferdowsi, Farzad & Mehraeen, Shahab & Upton, Gregory B., 2020. "Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar," Renewable Energy, Elsevier, vol. 152(C), pages 1227-1240.
    13. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    15. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    16. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    17. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    18. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    19. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    20. Groh, Elke D. & Möllendorff, Charlotte v., 2020. "What shapes the support of renewable energy expansion? Public attitudes between policy goals and risk, time, and social preferences," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.