IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v146y2020ics0301421520305395.html
   My bibliography  Save this article

What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems?

Author

Listed:
  • Bialek, Janusz

Abstract

The GB power blackout, that happened on 9 August 2019, was a unique stress test exposing fault lines brought about by the rapid changes due to the decarbonisation drive and penetration of smart grids technologies. It has demonstrated that, as a significant amount of new equipment and controls were added to the system in a very short time, the probability of common, hidden modes of failures has significantly increased. In the face of declining reliability, maintaining the status quo is not an option. While currently increasing the (N-1) security margin could prove to be expensive, the balance of costs and benefits is likely to change in future. Especially wider application of innovative frequency controls, including “virtual inertia” and Remedial Action Schemes, could help reduce the costs. Distributed Generation (DG) reached such a high penetration level that it cannot be treated any longer as negative demand. Traditional under-frequency load shedding should be made more selective. Interactions between the power system and other infrastructures are still poorly understood and there is a significant risk that if the current compartmentalised approach to their governance and operation is not changed, we may see more unexpected consequences of disturbances across the whole system.

Suggested Citation

  • Bialek, Janusz, 2020. "What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems?," Energy Policy, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305395
    DOI: 10.1016/j.enpol.2020.111821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520305395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bialek, J., 2020. "What does the power outage on 9 August 2019 tell us about GB power system," Cambridge Working Papers in Economics 2018, Faculty of Economics, University of Cambridge.
    2. Janusz Bialek, 2020. "What does the power outage on 9 August 2019 tell us about GB power system," Working Papers EPRG2006, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Kun & Wei, Lishen & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Zhu, Mengshu & Wen, Jinyu, 2024. "Incentive-compatible primary frequency response ancillary service market mechanism for incorporating diverse frequency support resources," Energy, Elsevier, vol. 306(C).
    2. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    3. L., Lavanya & Swarup, K.S., 2024. "Inertia monitoring in power systems: Critical features, challenges, and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Si, Ruiqi & Chen, Siyuan & Zhang, Jun & Xu, Jian & Zhang, Luxi, 2024. "A multi-agent reinforcement learning method for distribution system restoration considering dynamic network reconfiguration," Applied Energy, Elsevier, vol. 372(C).
    5. Ziqian Zhang & Carina Lehmal & Philipp Hackl & Robert Schuerhuber, 2022. "Transient Stability Analysis and Post-Fault Restart Strategy for Current-Limited Grid-Forming Converter," Energies, MDPI, vol. 15(10), pages 1-26, May.
    6. Hu, Chenxi & Zhang, Jun & Yuan, Hongxia & Gao, Tianlu & Jiang, Huaiguang & Yan, Jing & Wenzhong Gao, David & Wang, Fei-Yue, 2022. "Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19," Applied Energy, Elsevier, vol. 309(C).
    7. Konstantin Kurz & Carolin Bock & Michèle Knodt & Anna Stöckl, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Schmalenbach Journal of Business Research, Springer, vol. 74(4), pages 727-761, December.
    8. Stelios C. Dimoulias & Eleftherios O. Kontis & Grigoris K. Papagiannis, 2022. "Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches," Energies, MDPI, vol. 15(20), pages 1-30, October.
    9. Abha Pragati & Manohar Mishra & Pravat Kumar Rout & Debadatta Amaresh Gadanayak & Shazia Hasan & B. Rajanarayan Prusty, 2023. "A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective," Energies, MDPI, vol. 16(11), pages 1-39, May.
    10. Kurz, Konstantin & Bock, Carolin & Knodt, Michèle & Stöckl, Anna, 2022. "A Friend in Need Is a Friend Indeed? Analysis of the Willingness to Share Self-Produced Electricity During a Long-lasting Power Outage," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136773, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Chenxi & Zhang, Jun & Yuan, Hongxia & Gao, Tianlu & Jiang, Huaiguang & Yan, Jing & Wenzhong Gao, David & Wang, Fei-Yue, 2022. "Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19," Applied Energy, Elsevier, vol. 309(C).
    2. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    3. Ziqian Zhang & Carina Lehmal & Philipp Hackl & Robert Schuerhuber, 2022. "Transient Stability Analysis and Post-Fault Restart Strategy for Current-Limited Grid-Forming Converter," Energies, MDPI, vol. 15(10), pages 1-26, May.
    4. Li, Kun & Wei, Lishen & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Zhu, Mengshu & Wen, Jinyu, 2024. "Incentive-compatible primary frequency response ancillary service market mechanism for incorporating diverse frequency support resources," Energy, Elsevier, vol. 306(C).
    5. Zhi, Zhang & Ming, Zhou & Bo, Yuan & Zun, Guo & Zhaoyuan, Wu & Gengyin, Li, 2023. "Multipath retrofit planning approach for coal-fired power plants in low-carbon power system transitions: Shanxi Province case in China," Energy, Elsevier, vol. 275(C).
    6. Liu, Zeyu & Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2023. "Risk assessment and alleviation of regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 350(C).
    7. Stelios C. Dimoulias & Eleftherios O. Kontis & Grigoris K. Papagiannis, 2022. "Inertia Estimation of Synchronous Devices: Review of Available Techniques and Comparative Assessment of Conventional Measurement-Based Approaches," Energies, MDPI, vol. 15(20), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520305395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.