IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics0301421520303281.html
   My bibliography  Save this article

Interlinking major markets to explore electric car uptake

Author

Listed:
  • Gómez Vilchez, Jonatan J.
  • Jochem, Patrick
  • Fichtner, Wolf

Abstract

The purpose of this research is to investigate policy synergies and market interdependencies in the field of alternative powertrain technologies. The methodology is based on a simulation model grounded on system dynamics, a method that focuses on the structure (particularly feedback processes) and behavior over time of complex systems. The impacts of four policy measures on the uptake of electric cars in six countries (China, France, Germany, India, Japan and the United States), each segmented in five consumer groups, are explored. We observe that the additive impact of individual policies is lower than the impact of a corresponding policy package and that the impact of a policy package is greater if pursued by countries jointly. The implications of these findings are that the uptake of electric powertrains may depend not only on the combined impact of country-specific policy measures but also on the joint effect of policies in key electric car markets. The originality of this research arises from the endogenization of the electric car battery price evolution by explicitly modeling policy packages in six major car markets and interlinking them.

Suggested Citation

  • Gómez Vilchez, Jonatan J. & Jochem, Patrick & Fichtner, Wolf, 2020. "Interlinking major markets to explore electric car uptake," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303281
    DOI: 10.1016/j.enpol.2020.111588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520303281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    2. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    3. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    4. Oliva, Rogelio, 2003. "Model calibration as a testing strategy for system dynamics models," European Journal of Operational Research, Elsevier, vol. 151(3), pages 552-568, December.
    5. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    6. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    7. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    9. Lévay, Petra Zsuzsa & Drossinos, Yannis & Thiel, Christian, 2017. "The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership," Energy Policy, Elsevier, vol. 105(C), pages 524-533.
    10. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    11. Endo, Takahiro & Tsuboyama, Yuki & Hara, Yoritoshi, 2016. "Beyond taxation: Discourse around energy policy in Japan," Energy Policy, Elsevier, vol. 98(C), pages 412-419.
    12. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    13. Patrick Jochem & Jonatan J. Gómez Vilchez & Axel Ensslen & Johannes Schäuble & Wolf Fichtner, 2018. "Methods for forecasting the market penetration of electric drivetrains in the passenger car market," Transport Reviews, Taylor & Francis Journals, vol. 38(3), pages 322-348, May.
    14. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    2. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Deuten, Sebastiaan & Gómez Vilchez, Jonatan J. & Thiel, Christian, 2020. "Analysis and testing of electric car incentive scenarios in the Netherlands and Norway," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    4. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    5. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    6. Jonatan J. Gómez Vilchez & Austin Smyth & Luke Kelleher & Hui Lu & Charlene Rohr & Gillian Harrison & Christian Thiel, 2019. "Electric Car Purchase Price as a Factor Determining Consumers’ Choice and their Views on Incentives in Europe," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    7. Manel Arribas-Ibar & Petra A. Nylund & Alexander Brem, 2021. "The Risk of Dissolution of Sustainable Innovation Ecosystems in Times of Crisis: The Electric Vehicle during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(3), pages 1-14, January.
    8. Agovino, Massimiliano & Ferraro, Aniello & Garofalo, Antonio, 2023. "Are green cars an optimal and efficient choice for motorists? Evidence from Italy," Transport Policy, Elsevier, vol. 141(C), pages 140-151.
    9. Madhusudhan Adhikari & Laxman Prasad Ghimire & Yeonbae Kim & Prakash Aryal & Sundar Bahadur Khadka, 2020. "Identification and Analysis of Barriers against Electric Vehicle Use," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    10. Shrimali, Gireesh, 2021. "Getting to India's electric vehicle targets cost-effectively: To subsidize or not, and how?," Energy Policy, Elsevier, vol. 156(C).
    11. Newbery, David & Strbac, Goran, 2016. "What is needed for battery electric vehicles to become socially cost competitive?," Economics of Transportation, Elsevier, vol. 5(C), pages 1-11.
    12. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    13. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
    14. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    15. Broadbent, Gail Helen & Allen, Cameron Ian & Wiedmann, Thomas & Metternicht, Graciela Isabel, 2022. "Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 155-174.
    16. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2021. "Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles," Systemic Practice and Action Research, Springer, vol. 34(4), pages 399-417, August.
    17. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    18. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    19. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    20. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.