IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v80y2015icp36-44.html
   My bibliography  Save this article

A stakeholder analysis of divergent supply-chain trends for the European onshore and offshore wind installations

Author

Listed:
  • Wüstemeyer, Christoph
  • Madlener, Reinhard
  • Bunn, Derek W.

Abstract

This paper provides a survey-based analysis of investment decisions and structural shifts related to onshore and offshore wind power supply chains. Insights on cost reductions are obtained from a detailed stakeholder survey conducted amongst the European wind power industry in 2012. Overall, a rather more optimistic view of the scope for cost reductions in offshore technology is presented than has previously been evident in empirical analysis. From the analysis we conclude that the wind power industry has experienced a decoupling process of the offshore supply chain from its onshore counterpart with diverging technological requirements. For policy-makers, it is essential to acknowledge that barriers to adoption and the consequent needs for subsidies among the players in the onshore and offshore supply chains seem to differ, and that a micro-level analysis of the innovations and risks involved at the various stages in the supply chain is necessary.

Suggested Citation

  • Wüstemeyer, Christoph & Madlener, Reinhard & Bunn, Derek W., 2015. "A stakeholder analysis of divergent supply-chain trends for the European onshore and offshore wind installations," Energy Policy, Elsevier, vol. 80(C), pages 36-44.
  • Handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:36-44
    DOI: 10.1016/j.enpol.2015.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151500018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    2. Juckenack, Sören & Madlener, Reinhard, 2011. "Optimal Time to Start Serial Production: The Case of the Direct Drive Wind Turbine of Siemens Wind Power A/S," FCN Working Papers 6/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    4. Sunak, Yasin & Madlener, Reinhard, 2014. "Local Impacts of Wind Farms on Property Values: A Spatial Difference-in-Differences Analysis," FCN Working Papers 1/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Oct 2014.
    5. del Río, Pablo & Calvo Silvosa, Anxo & Iglesias Gómez, Guillermo, 2011. "Policies and design elements for the repowering of wind farms: A qualitative analysis of different options," Energy Policy, Elsevier, vol. 39(4), pages 1897-1908, April.
    6. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    7. Hoppmann, Joern & Peters, Michael & Schneider, Malte & Hoffmann, Volker H., 2013. "The two faces of market support—How deployment policies affect technological exploration and exploitation in the solar photovoltaic industry," Research Policy, Elsevier, vol. 42(4), pages 989-1003.
    8. Wüstemeyer, Christoph & Bunn, Derek & Madlener, Reinhard, 2012. "Bridging the Gap between Onshore and Offshore Innovations by the European Wind Power Supply Industry: A Survey-based Analysis," FCN Working Papers 19/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    10. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    11. van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
    12. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dedecca, João Gorenstein & Hakvoort, Rudi A. & Ortt, J. Roland, 2016. "Market strategies for offshore wind in Europe: A development and diffusion perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 286-296.
    2. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    3. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    4. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    5. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    6. Winkler, Lorenz & Kilic, Onur A. & Veldman, Jasper, 2022. "Collaboration in the offshore wind farm decommissioning supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    8. Reinhard Madlener & Barbara Glensk & Lukas Gläsel, 2019. "Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis," Energies, MDPI, vol. 12(24), pages 1-33, December.
    9. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    10. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    2. Wüstemeyer, Christoph & Bunn, Derek & Madlener, Reinhard, 2012. "Bridging the Gap between Onshore and Offshore Innovations by the European Wind Power Supply Industry: A Survey-based Analysis," FCN Working Papers 19/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    4. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    5. Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.
    6. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    7. Lehmann, Paul, 2009. "Climate policies with pollution externalities and learning spillovers," UFZ Discussion Papers 10/2009, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    8. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    9. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    10. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    11. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    12. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    13. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
    14. Reichenbach, Johanna & Requate, Till, 2012. "Subsidies for renewable energies in the presence of learning effects and market power," Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
    15. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    16. Bläsi, Albrecht & Requate, Till, 2007. "Subsidies for Wind Power: Surfing down the Learning Curve?," Economics Working Papers 2007-28, Christian-Albrechts-University of Kiel, Department of Economics.
    17. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    18. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    19. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    20. Dinica, Valentina, 2011. "Renewable electricity production costs--A framework to assist policy-makers' decisions on price support," Energy Policy, Elsevier, vol. 39(7), pages 4153-4167, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.