IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp367-379.html
   My bibliography  Save this article

Role of workplace charging opportunities on adoption of plug-in electric vehicles – Analysis based on GPS-based longitudinal travel data

Author

Listed:
  • Wu, Xing

Abstract

The benefit of using a plug-in electric vehicle (PEV) comes from its ability to substitute gasoline with electricity in operation. This paper studies the impact of workplace charges on the adoption of two types of PEVs: battery electric vehicle (BEV) and plug-in electric vehicle (PHEV). BEV users care more about the range anxiety issue. PHEV users, on the other hand, focus on the cost savings. The GPS-based longitude travel data of 143 vehicles covering 20 days to 18 months were employed in this paper. The dataset provides the detailed spatial and temporal travel information of a vehicle. With the known household locations, home-to-home tours were built for each vehicle, because home charges is usually regarded as a basic charging pattern. The detailed travel information of each vehicle was further used to help determine the workplace locations by analyzing its travel behavior over a period. Then, some home-to-home tours were broken into a series of home-to-work, work-to-home and work-to-work (if applicable) tours. These tours were used for analyzing the impact of workplace charges on the adoption of BEVs and PHEVs in population, respectively, considering three different levels of charger powers, as well as different price of gasoline.

Suggested Citation

  • Wu, Xing, 2018. "Role of workplace charging opportunities on adoption of plug-in electric vehicles – Analysis based on GPS-based longitudinal travel data," Energy Policy, Elsevier, vol. 114(C), pages 367-379.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:367-379
    DOI: 10.1016/j.enpol.2017.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517308315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Wu, Xing & Dong, Jing & Lin, Zhenhong, 2014. "Cost analysis of plug-in hybrid electric vehicles using GPS-based longitudinal travel data," Energy Policy, Elsevier, vol. 68(C), pages 206-217.
    3. Khan, Mobashwir & Kockelman, Kara M., 2012. "Predicting the market potential of plug-in electric vehicles using multiday GPS data," Energy Policy, Elsevier, vol. 46(C), pages 225-233.
    4. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    2. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    3. Zhang, Ziqi & Chen, Zhong & Xing, Qiang & Ji, Zhenya & Zhang, Tian, 2022. "Evaluation of the multi-dimensional growth potential of China's public charging facilities for electric vehicles through 2030," Utilities Policy, Elsevier, vol. 75(C).
    4. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Renewable Energy in Urban Areas: Worldwide Research Trends," Energies, MDPI, vol. 11(3), pages 1-19, March.
    5. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    6. Gudmunds, D. & Nyholm, E. & Taljegard, M. & Odenberger, M., 2020. "Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle," Renewable Energy, Elsevier, vol. 148(C), pages 1200-1215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    2. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    3. Makena Coffman & Scott Allen & Sherilyn Wee, 2018. "Who are Driving Electric Vehicles? An analysis of factors that affect EV adoption in Hawaii," Working Papers 2018-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    5. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    6. Tal, Gil & Lee, Jae H & Chakraborty, Debapriya & Davis, Adam, 2021. "Where are Used Electric Vehicles and Who are the Buyers?," Institute of Transportation Studies, Working Paper Series qt8125k5tf, Institute of Transportation Studies, UC Davis.
    7. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    8. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    9. Chen, Chien-fei & Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    11. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    12. Mingdong Sun & Chunfu Shao & Chengxiang Zhuge & Pinxi Wang & Xiong Yang & Shiqi Wang, 2022. "Uncovering travel and charging patterns of private electric vehicles with trajectory data: evidence and policy implications," Transportation, Springer, vol. 49(5), pages 1409-1439, October.
    13. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    14. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    15. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    16. Berliner, Rosaria, 2018. "Drivers of Change in a World of Mobility Disruption: An Overview of Long Distance Travel, Shared Mobility, and Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt6r64v86z, Institute of Transportation Studies, UC Davis.
    17. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    18. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    19. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    20. Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:367-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.