IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v56y2016icp513-525.html
   My bibliography  Save this article

Long-term abatement potential and current policy trajectories in Latin American countries

Author

Listed:
  • Clarke, Leon
  • McFarland, James
  • Octaviano, Claudia
  • van Ruijven, Bas
  • Beach, Robert
  • Daenzer, Kathryn
  • Herreras Martínez, Sara
  • Lucena, André F.P.
  • Kitous, Alban
  • Labriet, Maryse
  • Loboguerrero Rodriguez, Ana Maria
  • Mundra, Anupriya
  • van der Zwaan, Bob

Abstract

This paper provides perspectives on the role of Latin American and Latin American countries in meeting global abatement goals, based on the scenarios developed through the CLIMACAP–LAMP modeling study. Abatement potential in Latin America, among other things, is influenced by its development status, the large contributions of non-CO2 and land use change CO2 emissions, and energy endowments. In most scenarios in this study, the economic potential to reduce fossil fuel CO2 as well as non-CO2 emissions in Latin America in 2050 is lower than in the rest of the world (in total) when measured against 2010 emissions, due largely to higher emission growth in Latin America than in the rest of the world in the absence of abatement. The potential to reduce land use change CO2 emissions is complicated by a wide range of factors and is not addressed in this paper (land use emissions are largely addressed in a companion paper). The study confirms the results of previous research that the variation in abatement costs across models may vary by an order of magnitude or more, limiting the value of these assessments and supporting continued calls for research on the degree to which models are effectively representing key local circumstances that influence costs and available abatement options. Finally, a review of policies in place in several Latin American countries at the time of this writing finds that they would be of varying success in meeting the emission levels proposed by the most recent IPCC reports to limit global temperature change to 2°C.

Suggested Citation

  • Clarke, Leon & McFarland, James & Octaviano, Claudia & van Ruijven, Bas & Beach, Robert & Daenzer, Kathryn & Herreras Martínez, Sara & Lucena, André F.P. & Kitous, Alban & Labriet, Maryse & Loboguerre, 2016. "Long-term abatement potential and current policy trajectories in Latin American countries," Energy Economics, Elsevier, vol. 56(C), pages 513-525.
  • Handle: RePEc:eee:eneeco:v:56:y:2016:i:c:p:513-525
    DOI: 10.1016/j.eneco.2016.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316000402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2016.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markandya, A. & González-Eguino, M. & Criqui, P. & Mima, S., 2014. "Low climate stabilisation under diverse growth and convergence scenarios," Energy Policy, Elsevier, vol. 64(C), pages 288-301.
    2. Niklas H�hne & Michel den Elzen & Donovan Escalante, 2014. "Regional GHG reduction targets based on effort sharing: a comparison of studies," Climate Policy, Taylor & Francis Journals, vol. 14(1), pages 122-147, January.
    3. Bradford Griffin & Pierre Buisson & Patrick Criqui & Silvana Mima, 2014. "White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or slow CCS start-up?," Post-Print halshs-00873661, HAL.
    4. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    5. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    6. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    7. Maryse Labriet & Santosh Joshi & Marc Vielle & Philip Holden & Neil Edwards & Amit Kanudia & Richard Loulou & Frédéric Babonneau, 2015. "Worldwide impacts of climate change on energy for heating and cooling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1111-1136, October.
    8. Kathryn Daenzer & Ian Wing & Karen Fisher-Vanden, 2014. "Coal’s medium-run future under atmospheric greenhouse gas stabilization," Climatic Change, Springer, vol. 123(3), pages 763-783, April.
    9. Marshall Wise & Kate Calvin & Page Kyle & Patrick Luckow & Jae Edmonds, 2014. "Economic And Physical Modeling Of Land Use In Gcam 3.0 And An Application To Agricultural Productivity, Land, And Terrestrial Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-22.
    10. Markandya, Anil, 2011. "Equity and Distributional Implications of Climate Change," World Development, Elsevier, vol. 39(6), pages 1051-1060, June.
    11. -, 2009. "Climate Change and Development in Latin America and the Caribbean. Overview 2009," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 3165 edited by Eclac.
    12. Bradford Griffin & Pierre Buisson & Patrick Criqui & Silvana Mima, 2014. "White Knights: will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or slow CCS start-up?," Climatic Change, Springer, vol. 123(3), pages 623-635, April.
    13. David M. Lapola & Luiz A. Martinelli & Carlos A. Peres & Jean P. H. B. Ometto & Manuel E. Ferreira & Carlos A. Nobre & Ana Paula D. Aguiar & Mercedes M. C. Bustamante & Manoel F. Cardoso & Marcos H. C, 2014. "Pervasive transition of the Brazilian land-use system," Nature Climate Change, Nature, vol. 4(1), pages 27-35, January.
    14. Alban Kitous, Patrick Criqui, Elie Bellevrat and Bertrand Chateau, 2010. "Transformation Patterns of the Worldwide Energy System - Scenarios for the Century with the POLES Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    15. World Bank, 2014. "World Development Indicators 2014," World Bank Publications - Books, The World Bank Group, number 18237.
    16. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    17. Beach, Robert H. & Birur, Dileep K. & Davis, Lauren M. & Ross, Martin T., 2011. "A Dynamic General Equilibrium Analysis Of U.S. Biofuels Production," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103965, Agricultural and Applied Economics Association.
    18. Anil Markandaya & Mikel Gonzalez-Eguino & Patrick Criqui & Silvana Mima, 2014. "Low climate stabilisation under diverse growth and convergence scenarios," Post-Print halshs-00872630, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diniz Oliveira, Thais & Costa Gurgel, Angelo & Tonry, Steve, 2021. "Potential trading partners of a brazilian emissions trading scheme: The effects of linking with a developed region (Europe) and two developing regions (Latin America and China)," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    3. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    4. Diniz Oliveira, Thais & Gurgel, Angelo & Tonry, Steve, 2018. "The Effects for Brazil of Linking Emissions Trading Schemes in the context of the Heterogeneity of Trading Partners," Conference papers 332951, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Kober, Tom & Falzon, James & van der Zwaan, Bob & Calvin, Katherine & Kanudia, Amit & Kitous, Alban & Labriet, Maryse, 2016. "A multi-model study of energy supply investments in Latin America under climate control policy," Energy Economics, Elsevier, vol. 56(C), pages 543-551.
    6. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    7. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    8. Kober, Tom & Summerton, Philip & Pollitt, Hector & Chewpreecha, Unnada & Ren, Xiaolin & Wills, William & Octaviano, Claudia & McFarland, James & Beach, Robert & Cai, Yongxia & Calderon, Silvia & Fishe, 2016. "Macroeconomic impacts of climate change mitigation in Latin America: A cross-model comparison," Energy Economics, Elsevier, vol. 56(C), pages 625-636.
    9. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    10. Di Sbroiavacca, Nicolás & Nadal, Gustavo & Lallana, Francisco & Falzon, James & Calvin, Katherine, 2016. "Emissions reduction scenarios in the Argentinean Energy Sector," Energy Economics, Elsevier, vol. 56(C), pages 552-563.
    11. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    12. Arango-Aramburo, Santiago & Turner, Sean W.D. & Daenzer, Kathryn & Ríos-Ocampo, Juan Pablo & Hejazi, Mohamad I. & Kober, Tom & Álvarez-Espinosa, Andrés C. & Romero-Otalora, Germán D. & van der Zwaan, , 2019. "Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways," Energy Policy, Elsevier, vol. 128(C), pages 179-188.
    13. van der Zwaan, Bob & Kober, Tom & Longa, Francesco Dalla & van der Laan, Anouk & Jan Kramer, Gert, 2018. "An integrated assessment of pathways for low-carbon development in Africa," Energy Policy, Elsevier, vol. 117(C), pages 387-395.
    14. Oskar LECUYER & Esperanza GONZALEZ-MAHECHA & Michelle HALLACK & Morgan BAZILIAN & Adrien VOGT-SCHILB, 2019. "Committed emissions and the risk of stranded assets from power plants in Latin America and the Caribbean," Working Paper 7d9ac525-0354-46ef-aa0b-f, Agence française de développement.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    2. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    3. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    4. Kober, Tom & Falzon, James & van der Zwaan, Bob & Calvin, Katherine & Kanudia, Amit & Kitous, Alban & Labriet, Maryse, 2016. "A multi-model study of energy supply investments in Latin America under climate control policy," Energy Economics, Elsevier, vol. 56(C), pages 543-551.
    5. Oskar Lecuyer & Philippe Quirion, 2019. "Interaction between CO2 emissions trading and renewable energy subsidies under uncertainty: feed-in tariffs as a safety net against over-allocation," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 1002-1018, September.
    6. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    7. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
    8. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    9. De Cian, Enrica & Dasgupta, Shouro & Hof, Andries F. & van Sluisveld, Mariësse A.E. & Köhler, Jonathan & Pfluger, Benjamin & van Vuuren, Detlef P., 2020. "Actors, decision-making, and institutions in quantitative system modelling," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Hang Deng & Jeffrey M. Bielicki & Michael Oppenheimer & Jeffrey P. Fitts & Catherine A. Peters, 2017. "Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation," Climatic Change, Springer, vol. 144(2), pages 151-163, September.
    11. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    12. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    13. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    14. Calvin, Katherine V. & Beach, Robert & Gurgel, Angelo & Labriet, Maryse & Loboguerrero Rodriguez, Ana Maria, 2016. "Agriculture, forestry, and other land-use emissions in Latin America," Energy Economics, Elsevier, vol. 56(C), pages 615-624.
    15. Jonah Busch & Jens Engelmann, 2015. "The Future of Forests: Emissions from Tropical Deforestation With and Without a Carbon Price, 2016-2050," Working Papers id:7819, eSocialSciences.
    16. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    17. Mohammad Nure Alam, 2021. "Accessing the Effect of Renewables on the Wholesale Power Market," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 341-360.
    18. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    19. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    20. Marian Leimbach & Anastasis Giannousakis, 2019. "Burden sharing of climate change mitigation: global and regional challenges under shared socio-economic pathways," Climatic Change, Springer, vol. 155(2), pages 273-291, July.

    More about this item

    Keywords

    Scenarios; Latin America; Climate mitigation;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:56:y:2016:i:c:p:513-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.