IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v45y2014icp53-65.html
   My bibliography  Save this article

CO2 emission standards and investment in carbon capture

Author

Listed:
  • Eide, Jan
  • de Sisternes, Fernando J.
  • Herzog, Howard J.
  • Webster, Mort D.

Abstract

Policy makers in a number of countries have proposed or are considering proposing CO2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500lbs/MWh) is more likely than current proposals to incentivize investment in coal CCS technology, but only at high gas prices and to a lesser extent than a stringent standard (e.g., 300lbs/MWh).

Suggested Citation

  • Eide, Jan & de Sisternes, Fernando J. & Herzog, Howard J. & Webster, Mort D., 2014. "CO2 emission standards and investment in carbon capture," Energy Economics, Elsevier, vol. 45(C), pages 53-65.
  • Handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:53-65
    DOI: 10.1016/j.eneco.2014.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    2. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    3. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    4. Matthias Finkenrath, 2011. "Cost and Performance of Carbon Dioxide Capture from Power Generation," IEA Energy Papers 2011/5, OECD Publishing.
    5. Chen, Chao & Rubin, Edward S., 2009. "CO2 control technology effects on IGCC plant performance and cost," Energy Policy, Elsevier, vol. 37(3), pages 915-924, March.
    6. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    7. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
    8. Somayeh Heydari & Nick Ovenden & Afzal Siddiqui, 2012. "Real options analysis of investment in carbon capture and sequestration technology," Computational Management Science, Springer, vol. 9(1), pages 109-138, February.
    9. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
    2. Roman Mendelevitch & Pao-Yu Oei, 2015. "The Impact of Policy Measures on Future Power Generation Portfolio and Infrastructure: A Combined Electricity and CCTS Investment and Dispatch Model (ELCO)," Discussion Papers of DIW Berlin 1521, DIW Berlin, German Institute for Economic Research.
    3. Vera, Sonia & Sauma, Enzo, 2015. "Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chile," Energy, Elsevier, vol. 88(C), pages 478-488.
    4. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    5. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    6. Mardones, Cristian & García, Catalina, 2020. "Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants," Energy, Elsevier, vol. 206(C).
    7. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    8. Acevedo, Giancarlo & Bernales, Alejandro & Flores, Andrés & Inzunza, Andrés & Moreno, Rodrigo, 2021. "The effect of environmental policies on risk reductions in energy generation," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    9. Rana, Anber & Sadiq, Rehan & Alam, M. Shahria & Karunathilake, Hirushie & Hewage, Kasun, 2021. "Evaluation of financial incentives for green buildings in Canadian landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    11. Genovaitė Liobikienė & Mindaugas Butkus & Kristina Matuzevičiūtė, 2019. "The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)," Resources, MDPI, vol. 8(2), pages 1-23, April.
    12. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    2. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    3. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    4. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    5. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    6. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    7. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    8. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    9. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    10. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    11. Brauneis, Alexander & Mestel, Roland & Palan, Stefan, 2013. "Inducing low-carbon investment in the electric power industry through a price floor for emissions trading," Energy Policy, Elsevier, vol. 53(C), pages 190-204.
    12. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    13. Xiping Wang & Hongdou Zhang, 2018. "Valuation of CCS investment in China's coal‐fired power plants based on a compound real options model," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 978-988, October.
    14. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    15. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    16. Xiping Wang & Hongdou Zhang, 2018. "Optimal design of carbon tax to stimulate CCS investment in China's coal‐fired power plants: A real options analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 863-875, October.
    17. Xiping Wang & Shaoyuan Qie, 2018. "Study on the investment timing of carbon capture and storage under different business modes," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 639-649, August.
    18. Lei Zhu & Xin Liu, 2015. "Promoting the Carbon Removal in Coal Utilization-A Benefit-Risk Analysis among Full-Chain Carbon Capture and Utilization Project," Energy & Environment, , vol. 26(6-7), pages 1035-1053, November.
    19. Zhu, Lei & Fan, Ying, 2013. "Modelling the investment in carbon capture retrofits of pulverized coal-fired plants," Energy, Elsevier, vol. 57(C), pages 66-75.
    20. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.

    More about this item

    Keywords

    Electricity generation; CO2 emission standards; Carbon capture and storage;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • O21 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Planning Models; Planning Policy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.