IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v111y2022ics014098832200247x.html
   My bibliography  Save this article

How energy prices shape OECD economic growth: Panel evidence from multiple decades

Author

Listed:
  • Huntington, Hillard
  • Liddle, Brantley

Abstract

New fears about escalating fuel prices and accumulating inflation are raising concerns about the possible dimming of near-term prospects for world economic growth. The role of energy prices in shaping economic growth relates not only to geopolitical risks or environmental taxes but also to a range of strategies that place moratoria on primary energy sources like nuclear, coal, petroleum, and natural gas. Applying a new data set for country-level energy prices since 1960, this study evaluates the effects of energy prices on economic growth in 18 OECD countries by controlling for other important macroeconomic conditions that shape economic activity. Mean-group estimates that control for cross-country correlations are used to emphasize average responses across nations. Averaged across all nations, results suggest that a 10% increase in energy prices dampened economic growth by about 0.15%. Moreover, some evidence exists that this response may be larger for more energy-intensive economies.

Suggested Citation

  • Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:eneeco:v:111:y:2022:i:c:s014098832200247x
    DOI: 10.1016/j.eneco.2022.106082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832200247X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    3. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2017. "Macrofinancial History and the New Business Cycle Facts," NBER Macroeconomics Annual, University of Chicago Press, vol. 31(1), pages 213-263.
    4. Abdullah, Sabah & Morley, Bruce, 2014. "Environmental taxes and economic growth: Evidence from panel causality tests," Energy Economics, Elsevier, vol. 42(C), pages 27-33.
    5. Adeyemi, Olutomi I. & Hunt, Lester C., 2014. "Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand," Energy Economics, Elsevier, vol. 45(C), pages 435-444.
    6. William D. Nordhaus, 2007. "Who's Afraid of a Big Bad Oil Shock?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 38(2), pages 219-240.
    7. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    8. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 407-443.
    9. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    10. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    11. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    12. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    13. Finn, Mary G, 2000. "Perfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 400-416, August.
    14. James R. Mcfarland & Allen A. Fawcett & Adele C. Morris & John M. Reilly & Peter J. Wilcoxen, 2018. "Overview Of The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-37, February.
    15. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    16. Brantley Liddle and Hillard Huntington, 2020. "Revisiting the Income Elasticity of Energy Consumption: A Heterogeneous, Common Factor, Dynamic OECD & non-OECD Country Panel Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 207-230.
    17. Rotemberg, Julio J & Woodford, Michael, 1996. "Imperfect Competition and the Effects of Energy Price Increases on Economic Activity," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 550-577, November.
    18. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    19. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    20. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    21. Lutz Kilian, 2008. "A Comparison of the Effects of Exogenous Oil Supply Shocks on Output and Inflation in the G7 Countries," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 78-121, March.
    22. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    23. Blomquist, Johan & Westerlund, Joakim, 2013. "Testing slope homogeneity in large panels with serial correlation," Economics Letters, Elsevier, vol. 121(3), pages 374-378.
    24. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    25. Peter Ferderer, J., 1996. "Oil price volatility and the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 18(1), pages 1-26.
    26. Marc Gronwald, 2008. "Large Oil Shocks and the US Economy: Infrequent Incidents with Large Effects," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 151-172.
    27. Hassan, Mahmoud & Oueslati, Walid & Rousselière, Damien, 2020. "Environmental taxes, reforms and economic growth: an empirical analysis of panel data," Economic Systems, Elsevier, vol. 44(3).
    28. Sebastian Kripfganz & Daniel C. Schneider, 2020. "Response Surface Regressions for Critical Value Bounds and Approximate p‐values in Equilibrium Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1456-1481, December.
    29. Nathan S. Balke & Stephen P.A. Brown & Mine K. Yucel, 2002. "Oil Price Shocks and the U.S. Economy: Where Does the Asymmetry Originate?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-52.
    30. Lawrence Goulder, 1995. "Environmental taxation and the double dividend: A reader's guide," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 157-183, August.
    31. Jonathan Temple, 1999. "The New Growth Evidence," Journal of Economic Literature, American Economic Association, vol. 37(1), pages 112-156, March.
    32. Davis, Steven J. & Haltiwanger, John, 2001. "Sectoral job creation and destruction responses to oil price changes," Journal of Monetary Economics, Elsevier, vol. 48(3), pages 465-512, December.
    33. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    34. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    35. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    36. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    37. Hillard G. Huntington, 2006. "A Note on Price Asymmetry as Induced Technical Change," The Energy Journal, , vol. 27(3), pages 1-9, July.
    38. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    39. Rebeca Jimenez-Rodriguez & Marcelo Sanchez, 2005. "Oil price shocks and real GDP growth: empirical evidence for some OECD countries," Applied Economics, Taylor & Francis Journals, vol. 37(2), pages 201-228.
    40. Tore Bersvendsen & Jan Ditzen, 2021. "Testing for slope heterogeneity in Stata," Stata Journal, StataCorp LP, vol. 21(1), pages 51-80, March.
    41. Jan Ditzen, 2018. "Estimating dynamic common-correlated effects in Stata," Stata Journal, StataCorp LP, vol. 18(3), pages 585-617, September.
    42. Bruno, Giovanni S.F., 2005. "Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models," Economics Letters, Elsevier, vol. 87(3), pages 361-366, June.
    43. Ana Gómez-Loscos & Mar𨀠 Dolores Gadea & Antonio Montañ鳠, 2012. "Economic growth, inflation and oil shocks: are the 1970s coming back?," Applied Economics, Taylor & Francis Journals, vol. 44(35), pages 4575-4589, December.
    44. Hamilton, James D, 1988. "A Neoclassical Model of Unemployment and the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 96(3), pages 593-617, June.
    45. Stephanie Kremer & Alexander Bick & Dieter Nautz, 2013. "Inflation and growth: new evidence from a dynamic panel threshold analysis," Empirical Economics, Springer, vol. 44(2), pages 861-878, April.
    46. M.A. Adelman, 1980. "The Clumsy Cartel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    47. Liddle, Brantley & Huntington, Hillard, 2021. "There’s Technology Improvement, but is there Economy-wide Energy Leapfrogging? A Country Panel Analysis," World Development, Elsevier, vol. 140(C).
    48. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    49. Moghaddam, Mohsen Bakhshi & Lloyd-Ellis, Huw, 2022. "Heterogeneous effects of oil price fluctuations: Evidence from a nonparametric panel data model in Canada," Energy Economics, Elsevier, vol. 110(C).
    50. Brown, Stephen P.A., 2018. "New estimates of the security costs of U.S. oil consumption," Energy Policy, Elsevier, vol. 113(C), pages 171-192.
    51. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    52. Oueslati, Walid, 2015. "Growth and welfare effects of environmental tax reform and public spending policy," Economic Modelling, Elsevier, vol. 45(C), pages 1-13.
    53. John Weyant & Elmar Kriegler, 2014. "Preface and introduction to EMF 27," Climatic Change, Springer, vol. 123(3), pages 345-352, April.
    54. Jordi Galí & Mark J. Gertler, 2010. "International Dimensions of Monetary Policy," NBER Books, National Bureau of Economic Research, Inc, number gert07-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayyab Ayaz, Muhammad & Prodromou, Tina & Le, Thanh & Nepal, Rabindra, 2024. "Energy security dimensions and economic growth in Non-OECD Asia: An analysis on the role of institutional quality with energy policy implications," Energy Policy, Elsevier, vol. 188(C).
    2. Zanxin Wang & Rui Wang & Yaqing Liu, 2024. "The macroeconomic effect of petroleum product price regulation in alleviating the crude oil price volatility," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-22, April.
    3. Brännlund, Anton & Peterson, Lauri, 2024. "Power politics: How electric grievances shape election outcomes," Ecological Economics, Elsevier, vol. 217(C).
    4. Calì, Massimiliano & Cantore, Nicola & Marin, Giovanni & Mazzanti, Massimiliano & Nicolli, Francesco & Presidente, Giorgio, 2023. "Energy prices and the economic performance of firms in emerging countries," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 357-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brantley Liddle & Fakhri Hasanov, 2022. "Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1293-1319, March.
    2. Liddle, Brantley & Huntington, Hillard, 2020. "‘On the Road Again’: A 118 country panel analysis of gasoline and diesel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 151-167.
    3. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    5. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    6. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).
    7. Jaime Casassus & Freddy Higuera, 2011. "Stock Return Predictability and Oil Prices," Documentos de Trabajo 406, Instituto de Economia. Pontificia Universidad Católica de Chile..
    8. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    9. Claudio Morana, 2013. "The Oil Price-Macroeconomy Relationship Since the Mid-1980s: A Global Perspective," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    10. Eibinger, Tobias & Deixelberger, Beate & Manner, Hans, 2024. "Panel data in environmental economics: Econometric issues and applications to IPAT models," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    11. James D. Hamilton, 2013. "Oil prices, exhaustible resources and economic growth," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 1, pages 29-63, Edward Elgar Publishing.
    12. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    13. Awerbuch, Shimon & Sauter, Raphael, 2006. "Exploiting the oil-GDP effect to support renewables deployment," Energy Policy, Elsevier, vol. 34(17), pages 2805-2819, November.
    14. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    15. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    16. Brown, Stephen P.A. & Huntington, Hillard G., 2013. "Assessing the U.S. oil security premium," Energy Economics, Elsevier, vol. 38(C), pages 118-127.
    17. Lutz Kilian, 2009. "Pitfalls in Estimating Asymmetric Effects of Energy Price Shocks," 2009 Meeting Papers 473, Society for Economic Dynamics.
    18. Ana Gómez-Loscos & Mar𨀠 Dolores Gadea & Antonio Montañ鳠, 2012. "Economic growth, inflation and oil shocks: are the 1970s coming back?," Applied Economics, Taylor & Francis Journals, vol. 44(35), pages 4575-4589, December.
    19. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.

    More about this item

    Keywords

    OECD economic growth; Energy prices; Cross-country panel analysis;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:111:y:2022:i:c:s014098832200247x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.