IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i1p329-340.html
   My bibliography  Save this article

A new integrated cooperative game and optimization model for the allocation of forest resources

Author

Listed:
  • Rahmoune, Mahdi
  • Radjef, Mohammed Said
  • Boukherroub, Tasseda
  • Carvalho, Margarida

Abstract

We propose an integrated approach combining a cooperative game model and a multi-objective optimization model to determine the quantities of forest resources to allocate to several mills. The new mechanism developed in this study is applied to a regional case study in the province of Quebec (Canada), where public-owned forest resources should be allocated by the government to multiple competing mills. Collaboration between mills is considered in the upstream supply chain (i.e., harvesting, road construction/upgrading, and transportation operations) as well as their individual sustainability performances (economic, environmental and social aspects) in the allocation process. Moreover, this approach highlights the conditions under which the allocation ensures the stability of the configuration of the coalitions through a coalitional stability analysis. The proposed approach attempts to capture collaboration benefits and mills’ individual performances in the allocation process, while promoting equity among them. The coalitions of the case study overlap and thus, the concept of coalition configuration value is used to measure the marginal contribution of each mill to the cost savings. In particular, a methodology is proposed for the estimation of this value based on real data. The results of this study demonstrate that the allocation honors the efforts made by mills, both individually and collectively. In addition, it stimulates them towards a sustainable resource management relationship.

Suggested Citation

  • Rahmoune, Mahdi & Radjef, Mohammed Said & Boukherroub, Tasseda & Carvalho, Margarida, 2024. "A new integrated cooperative game and optimization model for the allocation of forest resources," European Journal of Operational Research, Elsevier, vol. 316(1), pages 329-340.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:329-340
    DOI: 10.1016/j.ejor.2024.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Xin & Zhao, Xue & Guo, Pengfei, 2022. "Cope with the COVID-19 pandemic: Dynamic bed allocation and patient subsidization in a public healthcare system," International Journal of Production Economics, Elsevier, vol. 243(C).
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Audy, Jean-François & D’Amours, Sophie & Rönnqvist, Mikael, 2012. "An empirical study on coalition formation and cost/savings allocation," International Journal of Production Economics, Elsevier, vol. 136(1), pages 13-27.
    4. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    5. Chwe Michael Suk-Young, 1994. "Farsighted Coalitional Stability," Journal of Economic Theory, Elsevier, vol. 63(2), pages 299-325, August.
    6. Gerard van der Laan & René van den Brink, 1998. "Axiomatization of a class of share functions for n-person games," Theory and Decision, Springer, vol. 44(2), pages 117-148, April.
    7. Albizuri, M.J. & Aurrecoechea, J. & Zarzuelo, J.M., 2006. "Configuration values: Extensions of the coalitional Owen value," Games and Economic Behavior, Elsevier, vol. 57(1), pages 1-17, October.
    8. Nicolas Andjiga & Sebastien Courtin, 2015. "Coalition configurations and share functions," Annals of Operations Research, Springer, vol. 225(1), pages 3-25, February.
    9. Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010. "Cost allocation in collaborative forest transportation," European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
    10. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    11. Guajardo, Mario & Rönnqvist, Mikael, 2015. "Operations research models for coalition structure in collaborative logistics," European Journal of Operational Research, Elsevier, vol. 240(1), pages 147-159.
    12. Fioravante Patrone & Joaquin Sanchez-Soriano & Ariel Dinar, 2008. "Does Game Theory Have A Role To Play In Policy Making In Natural Resources And The Environment?," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 221-228.
    13. Boukherroub, Tasseda & LeBel, Luc & Ruiz, Angel, 2017. "A framework for sustainable forest resource allocation: A Canadian case study," Omega, Elsevier, vol. 66(PB), pages 224-235.
    14. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    15. Basso, Franco & Basso, Leonardo J. & Rönnqvist, Mikael & Weintraub, Andres, 2021. "Coalition formation in collaborative production and transportation with competing firms," European Journal of Operational Research, Elsevier, vol. 289(2), pages 569-581.
    16. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    17. Yi, Sang-Seung & Shin, Hyukseung, 2000. "Endogenous formation of research coalitions with spillovers," International Journal of Industrial Organization, Elsevier, vol. 18(2), pages 229-256, February.
    18. Guajardo, Mario & Rönnqvist, Mikael & Flisberg, Patrik & Frisk, Mikael, 2018. "Collaborative transportation with overlapping coalitions," European Journal of Operational Research, Elsevier, vol. 271(1), pages 238-249.
    19. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    20. Liu, Dehai & Ji, Xiaoxian & Tang, Jiafu & Li, Hongyi, 2020. "A fuzzy cooperative game theoretic approach for multinational water resource spatiotemporal allocation," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1025-1037.
    21. Rafael Epstein & Jenny Karlsson & Mikael Rönnqvist & Andres Weintraub, 2007. "Harvest Operational Models in Forestry," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 365-377, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guajardo, Mario & Rönnqvist, Mikael & Flisberg, Patrik & Frisk, Mikael, 2018. "Collaborative transportation with overlapping coalitions," European Journal of Operational Research, Elsevier, vol. 271(1), pages 238-249.
    2. Mario Guajardo & Kurt Jörnsten & Mikael Rönnqvist, 2016. "Constructive and blocking power in collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 25-50, January.
    3. Kimms, A. & Kozeletskyi, I., 2016. "Core-based cost allocation in the cooperative traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 910-916.
    4. Basso, Franco & Guajardo, Mario & Varas, Mauricio, 2020. "Collaborative job scheduling in the wine bottling process," Omega, Elsevier, vol. 91(C).
    5. Arroyo, Federico, 2024. "Cost Allocation in Vehicle Routing Problems with Time Windows," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(1), pages 1241-1268.
    6. Tejada, O. & Álvarez-Mozos, M., 2018. "Graphs and (levels of) cooperation in games: Two ways how to allocate the surplus," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 114-122.
    7. Lotte Verdonck & Katrien Ramaekers & Benoît Depaire & An Caris & Gerrit K. Janssens, 2019. "Analysing the Effect of Partner Characteristics on the Performance of Horizontal Carrier Collaborations," Networks and Spatial Economics, Springer, vol. 19(2), pages 583-609, June.
    8. Álvarez-Mozos, M. & van den Brink, R. & van der Laan, G. & Tejada, O., 2013. "Share functions for cooperative games with levels structure of cooperation," European Journal of Operational Research, Elsevier, vol. 224(1), pages 167-179.
    9. Kidd, Martin P. & Borm, Peter, 2021. "On Determining Leading Coalitions in Supply Chains: Methodology and Application," Discussion Paper 2021-009, Tilburg University, Center for Economic Research.
    10. Shejun Deng & Yingying Yuan & Yong Wang & Haizhong Wang & Charles Koll, 2020. "Collaborative multicenter logistics delivery network optimization with resource sharing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    11. Basso, Franco & Basso, Leonardo J. & Rönnqvist, Mikael & Weintraub, Andres, 2021. "Coalition formation in collaborative production and transportation with competing firms," European Journal of Operational Research, Elsevier, vol. 289(2), pages 569-581.
    12. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).
    13. Nicola G. Andjiga & Sebastien Courtin, 2013. "Coalition configurations and share functions," Working Papers hal-00914883, HAL.
    14. Nicolas Andjiga & Sebastien Courtin, 2015. "Coalition configurations and share functions," Annals of Operations Research, Springer, vol. 225(1), pages 3-25, February.
    15. Nicolas G. Andjiga & Sébastien Courtin, 2015. "Coalition configurations and share functions," Post-Print hal-00914883, HAL.
    16. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    17. Mehmet Onur Olgun, 2022. "Collaborative airline revenue sharing game with grey demand data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 861-882, September.
    18. Eren Akyol, Derya & De Koster, René B.M., 2018. "Determining time windows in urban freight transport: A city cooperative approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 34-50.
    19. Joen Dahlberg & Stefan Engevall & Maud Göthe-Lundgren & Kurt Jörnsten & Mikael Rönnqvist, 2019. "Incitements for transportation collaboration by cost allocation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1009-1032, December.
    20. Mauricio Varas & Franco Basso & Paul Bosch & Juan Pablo Contreras & Raúl Pezoa, 2022. "A horizontal collaborative approach for planning the wine grape harvesting," Operational Research, Springer, vol. 22(5), pages 4965-4998, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.