IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v316y2024i1p240-254.html
   My bibliography  Save this article

Inference for aggregate efficiency: Theory and guidelines for practitioners

Author

Listed:
  • Simar, Léopold
  • Zelenyuk, Valentin
  • Zhao, Shirong

Abstract

We expand and develop further the recently developed framework for the inference about the aggregate efficiency, extending the existing theory and providing guidelines for practitioners. In Monte Carlo simulations, we thoroughly examine the performance of the various improvement methods (compared with the original CLT results) for the aggregate input-oriented and output-oriented efficiency for different ranges of small samples and different dimensions of the production model. From the simulations, we conclude that: (i) when the sample sizes are relatively small (around 200 and less), the full variance correction method (adapted from Simar et al., 2023) with the data sharpening method (adapted from Nguyen et al., 2022) generally provides a better performance; (ii) when the sample sizes are relatively large, the full variance correction method without the data sharpening method is expected to perform better than the other suitable methods known to date. Finally, we use two well-known empirical data sets to illustrate the practical implementations and the differences across the existing methods to facilitate their use by practitioners.

Suggested Citation

  • Simar, Léopold & Zelenyuk, Valentin & Zhao, Shirong, 2024. "Inference for aggregate efficiency: Theory and guidelines for practitioners," European Journal of Operational Research, Elsevier, vol. 316(1), pages 240-254.
  • Handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:240-254
    DOI: 10.1016/j.ejor.2024.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400047X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alois Kneip & Léopold Simar & Paul W. Wilson, 2016. "Testing Hypotheses in Nonparametric Models of Production," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 435-456, July.
    2. Simar, Leopold & Zelenyuk, Valentin, 2018. "Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores," LIDAM Discussion Papers ISBA 2018020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    4. Manh Pham & Léopold Simar & Valentin Zelenyuk, 2024. "Statistical Inference for Aggregation of Malmquist Productivity Indices," Operations Research, INFORMS, vol. 72(4), pages 1615-1629, July.
    5. Léopold Simar & Valentin Zelenyuk & Shirong Zhao, 2023. "Further improvements of finite sample approximation of central limit theorems for envelopment estimators," Journal of Productivity Analysis, Springer, vol. 59(2), pages 189-194, April.
    6. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2021. "Inference In Dynamic, Nonparametric Models Of Production: Central Limit Theorems For Malmquist Indices," Econometric Theory, Cambridge University Press, vol. 37(3), pages 537-572, June.
    7. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐stage models of production," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 170-191, June.
    8. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    9. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2008. "Technological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 461-492, August.
    10. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    11. Walheer, Barnabé, 2019. "Aggregating Farrell efficiencies with private and public inputs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1170-1177.
    12. Wilson, Paul W., 2018. "Dimension reduction in nonparametric models of production," European Journal of Operational Research, Elsevier, vol. 267(1), pages 349-367.
    13. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    14. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    15. Léopold Simar & Valentin Zelenyuk, 2018. "Central Limit Theorems for Aggregate Efficiency," Operations Research, INFORMS, vol. 66(1), pages 137-149, January.
    16. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non‐parametric, two‐stage models of production," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 170-191, June.
    17. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, June.
    18. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    19. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    20. repec:cup:cbooks:9781107687653 is not listed on IDEAS
    21. Simar, Léopold & Zelenyuk, Valentin, 2020. "Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1002-1015.
    22. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    23. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    24. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    25. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    26. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2018. "Central limit theorems for conditional efficiency measures and tests of the ‘separability’ condition in non-parametric, two-stage models of production," LIDAM Reprints ISBA 2018023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    27. Simar, Léopold & W. Wilson, Paul, 2019. "Central limit theorems and inference for sources of productivity change measured by nonparametric Malmquist indices," European Journal of Operational Research, Elsevier, vol. 277(2), pages 756-769.
    28. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    29. Fare, Rolf & Zelenyuk, Valentin, 2003. "On aggregate Farrell efficiencies," European Journal of Operational Research, Elsevier, vol. 146(3), pages 615-620, May.
    30. repec:cup:cbooks:9781107036161 is not listed on IDEAS
    31. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    32. Park, B.U. & Jeong, S.-O. & Simar, L., 2010. "Asymptotic distribution of conical-hull estimators of directional edges," LIDAM Reprints ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    2. Bao Hoang Nguyen & Léopold Simar & Valentin Zelenyuk, 2021. "Data Sharpening for improving CLT approximations for DEA-type efficiency estimators," CEPA Working Papers Series WP142021, School of Economics, University of Queensland, Australia.
    3. Léopold Simar & Paul W. Wilson, 2023. "Another look at productivity growth in industrialized countries," Journal of Productivity Analysis, Springer, vol. 60(3), pages 257-272, December.
    4. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    5. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    6. Caitlin T. O’Loughlin & Paul W. Wilson, 2021. "Benchmarking the performance of US Municipalities," Empirical Economics, Springer, vol. 60(6), pages 2665-2700, June.
    7. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    8. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    9. Simar, Léopold & Zelenyuk, Valentin, 2020. "Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1002-1015.
    10. Paul W. Wilson & Shirong Zhao, 2023. "Investigating the performance of Chinese banks over 2007–2014," Annals of Operations Research, Springer, vol. 321(1), pages 663-692, February.
    11. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregate efficiency of industry and its groups: the case of Queensland public hospitals," Empirical Economics, Springer, vol. 60(6), pages 2795-2836, June.
    12. Léopold Simar & Valentin Zelenyuk & Shirong Zhao, 2023. "Further improvements of finite sample approximation of central limit theorems for envelopment estimators," Journal of Productivity Analysis, Springer, vol. 59(2), pages 189-194, April.
    13. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    14. Léopold Simar & Valentin Zelenyuk, 2018. "Improving Finite Sample Approximation by Central Limit Theorems for DEA and FDH efficiency scores," CEPA Working Papers Series WP072018, School of Economics, University of Queensland, Australia.
    15. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    16. Manh Pham & Léopold Simar & Valentin Zelenyuk, 2024. "Statistical Inference for Aggregation of Malmquist Productivity Indices," Operations Research, INFORMS, vol. 72(4), pages 1615-1629, July.
    17. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2022. "Conical FDH Estimators of General Technologies, with Applications to Returns to Scale and Malmquist Productivity Indices," LIDAM Discussion Papers ISBA 2022024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    19. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    20. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.

    More about this item

    Keywords

    Data envelopment analysis; Efficiency; Non-parametric efficiency estimators; Free disposal hull; Aggregate efficiency;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:316:y:2024:i:1:p:240-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.