IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2016044.html
   My bibliography  Save this paper

Testing Hypotheses in Nonparametric Models of Production

Author

Listed:
  • Kneip, Alois
  • Simar, Leopold
  • Wilson, Paul

Abstract

Data envelopment analysis (DEA) and free disposal hull (FDH) estimators are widely used to estimate efficiency of production. Practitioners use DEA estimators far more frequently than FDH estimators, implicitly assuming that production sets are convex. Moreover, use of the constant returns to scale (CRS) version of the DEA estimator requires an assumption of CRS. Although bootstrap methods have been developed for making inference about the efficiencies of individual units, until now no methods exist for making consistent inference about differences in mean efficiency across groups of producers or for testing hypotheses about model structure such as returns to scale or convexity of the production set. We use central limit theorem results from our previous work to develop additional theoretical results permitting consistent tests of model structure and provide Monte Carlo evidence on the performance of the tests in terms of size and power. In addition, the variable returns to scale version of the DEA estimator is proved to attain the faster convergence rate of the CRS-DEA estimator under CRS. Using a sample of U.S. commercial banks, we test and reject convexity of the production set, calling into question results from numerous banking studies that have imposed convexity assumptions. Supplementary materials for this article are available online.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kneip, Alois & Simar, Leopold & Wilson, Paul, 2016. "Testing Hypotheses in Nonparametric Models of Production," LIDAM Reprints ISBA 2016044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2016044
    Note: In : Journal of Business and Economic Statistics, vol. 34, no. 3, p. 435-456 (2016)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    2. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    3. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    4. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    8. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    9. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    10. S.‐O. Jeong & B. U. Park, 2006. "Large Sample Approximation of the Distribution for Convex‐Hull Estimators of Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 139-151, March.
    11. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    12. Park, B.U. & Jeong, S.-O. & Simar, L., 2010. "Asymptotic distribution of conical-hull estimators of directional edges," LIDAM Reprints ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    3. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    4. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    5. Simar, Leopold & Wilson, Paul, 2018. "Technical, Allocative and Overall Efficiency: Inference and Hypothesis Testing," LIDAM Discussion Papers ISBA 2018018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Amy Apon & Linh Ngo & Michael Payne & Paul Wilson, 2015. "Assessing the effect of high performance computing capabilities on academic research output," Empirical Economics, Springer, vol. 48(1), pages 283-312, February.
    7. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    8. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    9. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    10. Michali, Maria & Emrouznejad, Ali & Dehnokhalaji, Akram & Clegg, Ben, 2023. "Subsampling bootstrap in network DEA," European Journal of Operational Research, Elsevier, vol. 305(2), pages 766-780.
    11. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    12. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    13. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    14. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    15. Wilson, Paul W., 2018. "Dimension reduction in nonparametric models of production," European Journal of Operational Research, Elsevier, vol. 267(1), pages 349-367.
    16. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2022. "Conical FDH Estimators of General Technologies, with Applications to Returns to Scale and Malmquist Productivity Indices," LIDAM Discussion Papers ISBA 2022024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    18. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    19. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregate efficiency of industry and its groups: the case of Queensland public hospitals," Empirical Economics, Springer, vol. 60(6), pages 2795-2836, June.
    20. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2016044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.