IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p729-749.html
   My bibliography  Save this article

A tree search algorithm for uncertainty-considered consecutive discharging and loading operations between ship and offshore platform

Author

Listed:
  • Zhou, Chenhao
  • Yuan, Mengxue
  • Zhang, Jingwen
  • Zhang, Wei

Abstract

This paper presents a combinatorial optimization problem for consecutive discharging and loading operations on a floating cargo-handling platform which is a new maritime technology for liquified natural gas redistribution. Because the discharging and loading process involves complex operations with stochastic and sequential nature, a Markov decision process model is formulated for the problem description with the objective of minimizing the ship turnaround time. Then, a tabu-based tree search algorithm allowing a look-ahead at future states is developed. Two sets of practical rules are proposed to control the local tree structure in terms of depth and breadth. The ship stability is also considered. A comprehensive analysis is conducted to determine the most suitable operation strategy for a specific platform design, followed by the analyses of the impacts of strategy parameters, ship size, operation uncertainties. The results show that a customized strategy that considers the dual-cycling operation outperforms other strategies.

Suggested Citation

  • Zhou, Chenhao & Yuan, Mengxue & Zhang, Jingwen & Zhang, Wei, 2024. "A tree search algorithm for uncertainty-considered consecutive discharging and loading operations between ship and offshore platform," European Journal of Operational Research, Elsevier, vol. 315(2), pages 729-749.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:729-749
    DOI: 10.1016/j.ejor.2023.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    2. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    3. V. Galle & V. H. Manshadi & S. Borjian Boroujeni & C. Barnhart & P. Jaillet, 2018. "The Stochastic Container Relocation Problem," Transportation Science, INFORMS, vol. 52(5), pages 1035-1058, October.
    4. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    5. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    6. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    7. Zhen, Lu, 2014. "Container yard template planning under uncertain maritime market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 199-217.
    8. Yuyan He & Aihu Wang & Hailiang Su, 2020. "The impact of incomplete vessel arrival information on container stacking," International Journal of Production Research, Taylor & Francis Journals, vol. 58(22), pages 6934-6948, November.
    9. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    10. Xianhao Xu & Xiaozhen Zhao & Bipan Zou & Yeming (Yale) Gong & Hongwei Wang, 2020. "Travel time models for a three-dimensional compact AS/RS considering different I/O point policies," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5432-5455, September.
    11. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    12. Chung-Yee Lee & Ming Liu & Chengbin Chu, 2015. "Optimal Algorithm for the General Quay Crane Double-Cycling Problem," Transportation Science, INFORMS, vol. 49(4), pages 957-967, November.
    13. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    14. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    15. Ren, Jidong & Tian, Yajie & Sawaragi, Tetsuo, 2011. "A tree search method for the container loading problem with shipment priority," European Journal of Operational Research, Elsevier, vol. 214(3), pages 526-535, November.
    16. Bertsimas, Dimitris & Griffith, J. Daniel & Gupta, Vishal & Kochenderfer, Mykel J. & Mišić, Velibor V., 2017. "A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 664-678.
    17. Lixin Tang & Wei Jiang & Jiyin Liu & Yun Dong, 2015. "Research into container reshuffling and stacking problems in container terminal yards," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 751-766, July.
    18. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    19. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    20. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    21. B Casey & E Kozan, 2012. "Optimising container storage processes at multimodal terminals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1126-1142, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    2. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    3. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    4. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    5. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    6. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    7. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    8. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    9. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    10. Boschma, René & Mes, Martijn R.K. & de Vries, Leon R., 2023. "Approximate dynamic programming for container stacking," European Journal of Operational Research, Elsevier, vol. 310(1), pages 328-342.
    11. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    12. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    13. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    14. Sun, Defeng & Meng, Ying & Tang, Lixin & Liu, Jinyin & Huang, Baobin & Yang, Jiefu, 2020. "Storage space allocation problem at inland bulk material stockyard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    15. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    16. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    18. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    19. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    20. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:729-749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.