IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v47y2015i7p751-766.html
   My bibliography  Save this article

Research into container reshuffling and stacking problems in container terminal yards

Author

Listed:
  • Lixin Tang
  • Wei Jiang
  • Jiyin Liu
  • Yun Dong

Abstract

Container stacking and reshuffling are important issues in the management of operations in a container terminal. Minimizing the number of reshuffles can increase productivity of the yard cranes and the efficiency of the terminal. In this research, the authors improve the existing static reshuffling model, develop five effective heuristics, and analyze the performance of these algorithms. A discrete-event simulation model is developed to animate the stacking, retrieving, and reshuffling operations and to test the performance of the proposed heuristics and their extended versions in a dynamic environment with arrivals and retrievals of containers. The experimental results for the static problem show that the improved model can solve the reshuffling problem more quickly than the existing model and the proposed extended heuristics are superior to the existing ones. The experimental results for the dynamic problem show that the results of the extended versions of the five proposed heuristics are superior or similar to the best results of the existing heuristics and consume very little time.

Suggested Citation

  • Lixin Tang & Wei Jiang & Jiyin Liu & Yun Dong, 2015. "Research into container reshuffling and stacking problems in container terminal yards," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 751-766, July.
  • Handle: RePEc:taf:uiiexx:v:47:y:2015:i:7:p:751-766
    DOI: 10.1080/0740817X.2014.971201
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2014.971201
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2014.971201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    2. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    3. Boschma, René & Mes, Martijn R.K. & de Vries, Leon R., 2023. "Approximate dynamic programming for container stacking," European Journal of Operational Research, Elsevier, vol. 310(1), pages 328-342.
    4. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    5. Defeng Sun & Lixin Tang & Roberto Baldacci & Zihan Chen, 2024. "A Decomposition Method for the Group-Based Quay Crane Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 543-570, March.
    6. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Sun, Defeng & Meng, Ying & Tang, Lixin & Liu, Jinyin & Huang, Baobin & Yang, Jiefu, 2020. "Storage space allocation problem at inland bulk material stockyard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    8. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    9. Lixin Tang & Jiyin Liu & Fei Yang & Feng Li & Kun Li, 2015. "Modeling and solution for the ship stowage planning problem of coils in the steel industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 564-581, October.
    10. Zhou, Chenhao & Yuan, Mengxue & Zhang, Jingwen & Zhang, Wei, 2024. "A tree search algorithm for uncertainty-considered consecutive discharging and loading operations between ship and offshore platform," European Journal of Operational Research, Elsevier, vol. 315(2), pages 729-749.
    11. Yuan, Yuan & Tang, Lixin, 2017. "Novel time-space network flow formulation and approximate dynamic programming approach for the crane scheduling in a coil warehouse," European Journal of Operational Research, Elsevier, vol. 262(2), pages 424-437.
    12. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    13. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    14. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
    15. Bacci, Tiziano & Mattia, Sara & Ventura, Paolo, 2020. "A branch-and-cut algorithm for the restricted Block Relocation Problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 452-459.
    16. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
    17. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:47:y:2015:i:7:p:751-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.