IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i1d10.1007_s00291-020-00606-9.html
   My bibliography  Save this article

An interval efficiency analysis with dual-role factors

Author

Listed:
  • Mehdi Toloo

    (VŠB-Technical University of Ostrava
    Sultan Qaboos University)

  • Esmaeil Keshavarz

    (Islamic Azad University)

  • Adel Hatami-Marbini

    (De Montfort University)

Abstract

Data envelopment analysis (DEA) is a data-driven and benchmarking tool for evaluating the relative efficiency of production units with multiple outputs and inputs. Conventional DEA models are based on a production system by converting inputs to outputs using input-transformation-output processes. However, in some situations, it is inescapable to think of some assessment factors, referred to as dual-role factors, which can play simultaneously input and output roles in DEA. The observed data are often assumed to be precise although it needs to consider uncertainty as an inherent part of most real-world applications. Dealing with imprecise data is a perpetual challenge in DEA that can be treated by presenting the interval data. This paper develops an imprecise DEA approach with dual-role factors based on revised production possibility sets. The resulting models are a pair of mixed binary linear programming problems that yield the possible relative efficiencies in the form of intervals. In addition, a procedure is presented to assign the optimal designation to a dual-role factor and specify whether the dual-role factor is a nondiscretionary input or output. Given the interval efficiencies, the production units are categorized into the efficient and inefficient sets. Beyond the dichotomized classification, a practical ranking approach is also adopted to achieve incremental discrimination through evaluation analysis. Finally, an application to third-party reverse logistics providers is studied to illustrate the efficacy and applicability of the proposed approach.

Suggested Citation

  • Mehdi Toloo & Esmaeil Keshavarz & Adel Hatami-Marbini, 2021. "An interval efficiency analysis with dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 255-287, March.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:1:d:10.1007_s00291-020-00606-9
    DOI: 10.1007/s00291-020-00606-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00606-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00606-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walukiewicz, Stanislaw, 1981. "Some aspects of integer programming duality," European Journal of Operational Research, Elsevier, vol. 7(2), pages 196-202, June.
    2. Talluri, Srinivas & Baker, R. C., 2002. "A multi-phase mathematical programming approach for effective supply chain design," European Journal of Operational Research, Elsevier, vol. 141(3), pages 544-558, September.
    3. Krumwiede, Dennis W. & Sheu, Chwen, 2002. "A model for reverse logistics entry by third-party providers," Omega, Elsevier, vol. 30(5), pages 325-333, October.
    4. SHOKOUHI, Amir H. & SHAHIRIARI, Hamid & AGRELL, Per J. & HATAMI-MARBINI, Adel, 2014. "Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data," LIDAM Reprints CORE 2556, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Lovell, C. A. Knox & Pastor, Jesus T., 1999. "Radial DEA models without inputs or without outputs," European Journal of Operational Research, Elsevier, vol. 118(1), pages 46-51, October.
    6. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    7. Mehdi Toloo & Mona Barat, 2015. "On considering dual-role factor in supplier selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 107-122, August.
    8. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Reza Farzipoor Saen, 2011. "A Decision Model For Selecting Third-Party Reverse Logistics Providers In The Presence Of Both Dual-Role Factors And Imprecise Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(02), pages 239-254.
    11. Beasley, J. E., 1990. "Comparing university departments," Omega, Elsevier, vol. 18(2), pages 171-183.
    12. Zhu, Joe, 2003. "Imprecise data envelopment analysis (IDEA): A review and improvement with an application," European Journal of Operational Research, Elsevier, vol. 144(3), pages 513-529, February.
    13. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    14. Govindan, Kannan & Palaniappan, Murugesan & Zhu, Qinghua & Kannan, Devika, 2012. "Analysis of third party reverse logistics provider using interpretive structural modeling," International Journal of Production Economics, Elsevier, vol. 140(1), pages 204-211.
    15. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    16. Kleinsorge, Ilene K. & Schary, Philip B. & Tanner, Ray D., 1992. "Data Envelopment Analysis for monitoring customer-supplier relationships," Journal of Accounting and Public Policy, Elsevier, vol. 11(4), pages 357-372.
    17. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    18. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    19. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    20. Cook, Wade D. & Zhu, Joe, 2007. "Classifying inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 180(2), pages 692-699, July.
    21. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    22. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    23. SHOKOUHI, Amir H. & HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber, 2010. "A robust optimization approach for imprecise data envelopment analysis," LIDAM Reprints CORE 2215, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    2. Wen-Chih Chen, 2021. "On performance evaluation with a dual-role factor," Annals of Operations Research, Springer, vol. 304(1), pages 63-84, September.
    3. Vladimir Pajković & Mirjana Grdinić-Rakonjac, 2021. "Evaluation of Road Safety Performance Based on Self-Reported Behaviour Data Set," Sustainability, MDPI, vol. 13(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    2. Bohlool Ebrahimi & Madjid Tavana & Andreas Kleine & Andreas Dellnitz, 2021. "An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1103-1124, December.
    3. Shabani, Amir & Visani, Franco & Barbieri, Paolo & Dullaert, Wout & Vigo, Daniele, 2019. "Reliable estimation of suppliers’ total cost of ownership: An imprecise data envelopment analysis model with common weights," Omega, Elsevier, vol. 87(C), pages 57-70.
    4. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    5. Toloo, Mehdi & Ebrahimi, Bohlool & Amin, Gholam R., 2021. "New data envelopment analysis models for classifying flexible measures: The role of non-Archimedean epsilon," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1037-1050.
    6. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    7. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    8. Jolly Puri & Shiv Prasad Yadav, 2017. "Improved DEA models in the presence of undesirable outputs and imprecise data: an application to banking industry in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1608-1629, November.
    9. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    10. HATAMI-MARBINI, Adel & AGRELL, Per & AGHAYI, Nazila, 2013. "Imprecise data envelopment analysis for the two-stage process," LIDAM Discussion Papers CORE 2013004, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Mehdi Toloo & Mona Barat, 2015. "On considering dual-role factor in supplier selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 107-122, August.
    12. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    13. Anna Labijak-Kowalska & Miłosz Kadziński, 2023. "Exact and stochastic methods for robustness analysis in the context of Imprecise Data Envelopment Analysis," Operational Research, Springer, vol. 23(1), pages 1-34, March.
    14. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    15. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    16. Reza Farzipoor Saen, 2009. "A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors," Annals of Operations Research, Springer, vol. 172(1), pages 177-192, November.
    17. Mirhedayatian, Seyed Mostafa & Azadi, Majid & Farzipoor Saen, Reza, 2014. "A novel network data envelopment analysis model for evaluating green supply chain management," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 544-554.
    18. Sepideh Abolghasem & Mehdi Toloo & Santiago Amézquita, 2019. "Cross-efficiency evaluation in the presence of flexible measures with an application to healthcare systems," Health Care Management Science, Springer, vol. 22(3), pages 512-533, September.
    19. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    20. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:1:d:10.1007_s00291-020-00606-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.