IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i3p1078-1086.html
   My bibliography  Save this article

A lexicographically optimal completion for pairwise comparison matrices with missing entries

Author

Listed:
  • Ágoston, Kolos Csaba
  • Csató, László

Abstract

Estimating missing judgements is a key component in many multi-criteria decision making techniques, especially in the Analytic Hierarchy Process. Inspired by the Koczkodaj inconsistency index and a widely used solution concept of cooperative game theory called the nucleolus, the current study proposes a new algorithm for this purpose. In particular, the missing values are substituted by variables, and the inconsistency of the most inconsistent triad is reduced first, followed by the inconsistency of the second most inconsistent triad, and so on. The necessary and sufficient condition for the uniqueness of the suggested lexicographically optimal completion is proved to be a simple graph-theoretic notion: the undirected graph associated with the pairwise comparisons, where the edges represent the known elements, should be connected. Crucially, our method does not depend on an arbitrarily chosen measure of inconsistency as there exists essentially one reasonable triad inconsistency index.

Suggested Citation

  • Ágoston, Kolos Csaba & Csató, László, 2024. "A lexicographically optimal completion for pairwise comparison matrices with missing entries," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1078-1086.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:3:p:1078-1086
    DOI: 10.1016/j.ejor.2023.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723008111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ágoston, Kolos Csaba & Csató, László, 2022. "Inconsistency thresholds for incomplete pairwise comparison matrices," Omega, Elsevier, vol. 108(C).
    2. Vargas, Luis G., 1990. "An overview of the analytic hierarchy process and its applications," European Journal of Operational Research, Elsevier, vol. 48(1), pages 2-8, September.
    3. Ernest H. Forman & Saul I. Gass, 2001. "The Analytic Hierarchy Process---An Exposition," Operations Research, INFORMS, vol. 49(4), pages 469-486, August.
    4. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    5. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    6. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    7. László Csató, 2018. "Characterization of an inconsistency ranking for pairwise comparison matrices," Annals of Operations Research, Springer, vol. 261(1), pages 155-165, February.
    8. Chao, Xiangrui & Kou, Gang & Li, Tie & Peng, Yi, 2018. "Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information," European Journal of Operational Research, Elsevier, vol. 265(1), pages 239-247.
    9. Golany, B. & Kress, M., 1993. "A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices," European Journal of Operational Research, Elsevier, vol. 69(2), pages 210-220, September.
    10. Bice Cavallo, 2020. "Functional relations and Spearman correlation between consistency indices," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(2), pages 301-311, February.
    11. László Csató, 2013. "Ranking by pairwise comparisons for Swiss-system tournaments," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(4), pages 783-803, December.
    12. Tekile, Hailemariam Abebe & Brunelli, Matteo & Fedrizzi, Michele, 2023. "A numerical comparative study of completion methods for pairwise comparison matrices," Operations Research Perspectives, Elsevier, vol. 10(C).
    13. Vijay Pereira & Umesh Bamel, 2023. "Charting the managerial and theoretical evolutionary path of AHP using thematic and systematic review: a decadal (2012–2021) study," Annals of Operations Research, Springer, vol. 326(2), pages 635-651, July.
    14. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    15. Konrad Kułakowski & Jiri Mazurek & Michał Strada, 2022. "On the similarity between ranking vectors in the pairwise comparison method," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(9), pages 2080-2089, October.
    16. Bozóki, Sándor & Csató, László & Temesi, József, 2016. "An application of incomplete pairwise comparison matrices for ranking top tennis players," European Journal of Operational Research, Elsevier, vol. 248(1), pages 211-218.
    17. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    18. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    20. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    2. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    3. Tekile, Hailemariam Abebe & Brunelli, Matteo & Fedrizzi, Michele, 2023. "A numerical comparative study of completion methods for pairwise comparison matrices," Operations Research Perspectives, Elsevier, vol. 10(C).
    4. Zsombor Szádoczki & Sándor Bozóki & Patrik Juhász & Sergii V. Kadenko & Vitaliy Tsyganok, 2023. "Incomplete pairwise comparison matrices based on graphs with average degree approximately 3," Annals of Operations Research, Springer, vol. 326(2), pages 783-807, July.
    5. D'ora Gr'eta Petr'oczy & L'aszl'o Csat'o, 2019. "Revenue allocation in Formula One: a pairwise comparison approach," Papers 1909.12931, arXiv.org, revised Dec 2020.
    6. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    7. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    8. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    9. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    10. Pietro Amenta & Alessio Ishizaka & Antonio Lucadamo & Gabriella Marcarelli & Vijay Vyas, 2020. "Computing a common preference vector in a complex multi-actor and multi-group decision system in Analytic Hierarchy Process context," Annals of Operations Research, Springer, vol. 284(1), pages 33-62, January.
    11. Petróczy, Dóra Gréta, 2021. "An alternative quality of life ranking on the basis of remittances," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    12. Csató, László, 2024. "Right-left asymmetry of the eigenvector method: A simulation study," European Journal of Operational Research, Elsevier, vol. 313(2), pages 708-717.
    13. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    14. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    15. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    16. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    17. Michele Fedrizzi & Nino Civolani & Andrew Critch, 2020. "Inconsistency evaluation in pairwise comparison using norm-based distances," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 657-672, December.
    18. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
    19. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Does AHP help us make a choice? An experimental evaluation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1801-1812, October.
    20. Ágoston, Kolos Csaba & Csató, László, 2022. "Inconsistency thresholds for incomplete pairwise comparison matrices," Omega, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:3:p:1078-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.