IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v6y2025i1d10.1007_s43069-024-00412-x.html
   My bibliography  Save this article

Calculating Maximum Eigenvalues in Pairwise Comparison Matrices for the Analytic Hierarchy Process

Author

Listed:
  • Shunsuke Shiraishi

    (Hiroshima Institute of Technology)

  • Tsuneshi Obata

    (Otemon Gakuin University)

Abstract

This paper focuses on a numerical method for calculating the maximum eigenvalue of a pairwise comparison matrix in the analytic hierarchy process. Two contributions are made: First, the first and second differentials of the characteristic polynomial of a pairwise comparison matrix are demonstrated to be always positive in the region larger than the maximum eigenvalue. This is proven by effectively utilizing the Gauss–Lucas theorem, which is a mathematical principle that helps in analyzing polynomials. By leveraging this fact, both Newton’s method and the secant method are shown to generate sequences converging to the maximum eigenvalue, bringing a new perspective to the numerical computation of the maximum eigenvalue. The second contribution is the judicious selection of initial points. Using an upper bound for the maximum eigenvalue as initial points, Newton’s method and the secant method generate a decreasing sequence that is bounded below. This allows generalizing our results for lower-order pairwise comparison matrices independent of the matrix order. The positivity of the first and second differentials of the characteristic polynomial also guarantees that Newton’s method and the secant method have quadratic and super-linear convergence, respectively. Numerical simulations confirm the superiority of Newton’s method in terms of convergence.

Suggested Citation

  • Shunsuke Shiraishi & Tsuneshi Obata, 2025. "Calculating Maximum Eigenvalues in Pairwise Comparison Matrices for the Analytic Hierarchy Process," SN Operations Research Forum, Springer, vol. 6(1), pages 1-15, March.
  • Handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00412-x
    DOI: 10.1007/s43069-024-00412-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00412-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00412-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Csató, László, 2024. "Right-left asymmetry of the eigenvector method: A simulation study," European Journal of Operational Research, Elsevier, vol. 313(2), pages 708-717.
    2. Ágoston, Kolos Csaba & Csató, László, 2024. "A lexicographically optimal completion for pairwise comparison matrices with missing entries," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1078-1086.
    3. Aupetit, Bernard & Genest, Christian, 1993. "On some useful properties of the Perron eigenvalue of a positive reciprocal matrix in the context of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 70(2), pages 263-268, October.
    4. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Alessio Ishizaka & Markus Lusti, 2006. "How to derive priorities in AHP: a comparative study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 387-400, December.
    7. Yuji Sato & Kim Hua Tan, 2023. "Inconsistency indices in pairwise comparisons: an improvement of the Consistency Index," Annals of Operations Research, Springer, vol. 326(2), pages 809-830, July.
    8. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    2. Stein, William E. & Mizzi, Philip J., 2007. "The harmonic consistency index for the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 177(1), pages 488-497, February.
    3. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    4. A Ishizaka & D Balkenborg & T Kaplan, 2011. "Influence of aggregation and measurement scale on ranking a compromise alternative in AHP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 700-710, April.
    5. Antonopoulos, I.-S. & Perkoulidis, G. & Logothetis, D. & Karkanias, C., 2014. "Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 149-159.
    6. Pietro Amenta & Alessio Ishizaka & Antonio Lucadamo & Gabriella Marcarelli & Vijay Vyas, 2020. "Computing a common preference vector in a complex multi-actor and multi-group decision system in Analytic Hierarchy Process context," Annals of Operations Research, Springer, vol. 284(1), pages 33-62, January.
    7. Sasaki, Yasuo, 2023. "Strategic manipulation in group decisions with pairwise comparisons: A game theoretical perspective," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1133-1139.
    8. Csató, László, 2024. "Right-left asymmetry of the eigenvector method: A simulation study," European Journal of Operational Research, Elsevier, vol. 313(2), pages 708-717.
    9. N. Balaji & Y. Lokeswara Choudary, 2012. "Optimization of Supply Chain Efficiency in Multi Criteria Decision Environment Using AHP Model," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 3(2), pages 67-71, May.
    10. Furtado, Susana & Johnson, Charles R., 2024. "Efficiency analysis for the Perron vector of a reciprocal matrix," Applied Mathematics and Computation, Elsevier, vol. 480(C).
    11. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    12. C. Acuña-Soto & V. Liern & B. Pérez-Gladish, 2021. "Normalization in TOPSIS-based approaches with data of different nature: application to the ranking of mathematical videos," Annals of Operations Research, Springer, vol. 296(1), pages 541-569, January.
    13. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    14. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    15. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    16. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    17. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    18. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    19. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    20. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00412-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.