IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p977-991.html
   My bibliography  Save this article

Learning and forgetting interactions within a collaborative human-centric manufacturing network

Author

Listed:
  • Asghari, M.
  • Afshari, H.
  • Jaber, M.Y.
  • Searcy, C.

Abstract

Learning and forgetting (LaF) phenomena are characteristic of labor-intensive production and service industries. To mitigate the effects of LaF in a human-centric manufacturing system integrated with outsourcing, managers need to coordinate their decisions with partners for assigning operations and scheduling processes following a hierarchy. A model that addresses this should consider the expected latency of various tasks across assignments and production sequences and similarities among jobs as that affects learning. This paper develops a novel bi-level LaF model to help determine the leader-follower decisions in a decentralized network. It models the learning concept as a factor of task execution order and task variety. The mixed-integer non-linear optimization model determines the best order coordination and scheduling scheme by minimizing the processing, operating, and holding costs and penalties for missing deadlines. This study also develops an efficient column-and-constraint generation algorithm based on the duplication method, which enables solving bi-level models in which the lower-level model includes integer variables. This study also provides an illustrative real-sized example to validate the model and prove the efficiency of our resolution method. The results indicate that adopting compromise solutions enables preoccupied workers to be released earlier than expected, reducing the costs associated with learning and forgetting (due to latency). Despite the effects of LaF and the decentralized structure of the supply chain, which includes rising network costs, the schedules become more precise, and the cost balance among actors effectively increases.

Suggested Citation

  • Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2024. "Learning and forgetting interactions within a collaborative human-centric manufacturing network," European Journal of Operational Research, Elsevier, vol. 313(3), pages 977-991.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:977-991
    DOI: 10.1016/j.ejor.2023.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Liret & Raphael Dorne, 2008. "Work Allocation and Scheduling," Springer Books, in: Christos Voudouris & David Lesaint & Gilbert Owusu (ed.), Service Chain Management, chapter 10, pages 139-152, Springer.
    2. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 115512, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    4. Felipe Cerdas & Max Juraschek & Sebastian Thiede & Christoph Herrmann, 2017. "Life Cycle Assessment of 3D Printed Products in a Distributed Manufacturing System," Journal of Industrial Ecology, Yale University, vol. 21(S1), pages 80-93, November.
    5. Frangioni, Antonio, 1995. "On a new class of bilevel programming problems and its use for reformulating mixed integer problems," European Journal of Operational Research, Elsevier, vol. 82(3), pages 615-646, May.
    6. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    7. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 115511, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    9. Glock, C. H. & Grosse, E. H. & Jaber, M. Y. & Smunt, T. L., 2019. "Applications of learning curves in production and operations management: A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 107692, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    2. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Nasr, Walid W. & Jaber, Mohamad Y., 2019. "Supplier development in a two-level lot sizing problem with non-conforming items and learning," International Journal of Production Economics, Elsevier, vol. 216(C), pages 349-363.
    6. Eryk Szwarc & Grzegorz Bocewicz & Paulina Golińska-Dawson & Zbigniew Banaszak, 2023. "Proactive Operations Management: Staff Allocation with Competence Maintenance Constraints," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    7. Javad Asadkhani & Hadi Mokhtari & Saman Tahmasebpoor, 2022. "Optimal lot-sizing under learning effect in inspection errors with different types of imperfect quality items," Operational Research, Springer, vol. 22(3), pages 2631-2665, July.
    8. Natalie Leesakul & Anne-Marie Oostveen & Iveta Eimontaite & Max L. Wilson & Richard Hyde, 2022. "Workplace 4.0: Exploring the Implications of Technology Adoption in Digital Manufacturing on a Sustainable Workforce," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    9. Fan, Xiaomin & Xu, Yingzhi, 2024. "How does the opening of high-speed railway affect the regional pollution gap in China? From the perspective of knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    10. Dakotah Hogan & John Elshaw & Clay Koschnick & Jonathan Ritschel & Adedeji Badiru & Shawn Valentine, 2020. "Cost Estimating Using a New Learning Curve Theory for Non-Constant Production Rates," Forecasting, MDPI, vol. 2(4), pages 1-23, October.
    11. Manda, A.B. & Uzsoy, Reha, 2021. "Managing product transitions with learning and congestion effects," International Journal of Production Economics, Elsevier, vol. 239(C).
    12. Jaber, M.Y. & Peltokorpi, J. & Glock, C.H. & Grosse, E.H. & Pusic, M., 2021. "Adjustment for cognitive interference enhances the predictability of the power learning curve," International Journal of Production Economics, Elsevier, vol. 234(C).
    13. Loske, Dominic & Klumpp, Matthias & Grosse, Eric H. & Modica, Tiziana & Glock, Christoph H., 2023. "Storage systems’ impact on order picking time: An empirical economic analysis of flow-rack storage systems," International Journal of Production Economics, Elsevier, vol. 261(C).
    14. Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.
    15. Ranasinghe, Thilini & Grosse, Eric H. & Glock, Christoph H. & Jaber, Mohamad Y., 2024. "Never too late to learn: Unlocking the potential of aging workforce in manufacturing and service industries," International Journal of Production Economics, Elsevier, vol. 270(C).
    16. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    17. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).
    18. Apetrei, Cristina I. & Strelkovskii, Nikita & Khabarov, Nikolay & Javalera Rincón, Valeria, 2024. "Improving the representation of smallholder farmers’ adaptive behaviour in agent-based models: Learning-by-doing and social learning," Ecological Modelling, Elsevier, vol. 489(C).
    19. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    20. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:977-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.