IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2018y2018i2p145-171.html
   My bibliography  Save this article

Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps

Author

Listed:
  • Danping Li
  • Yan Zeng
  • Hailiang Yang

Abstract

This paper considers a robust optimal excess-of-loss reinsurance-investment problem in a model with jumps for an ambiguity-averse insurer (AAI), who worries about ambiguity and aims to develop a robust optimal reinsurance-investment strategy. The AAI’s surplus process is assumed to follow a diffusion model, which is an approximation of the classical risk model. The AAI is allowed to purchase excess-of-loss reinsurance and invest her surplus in a risk-free asset and a risky asset whose price is described by a jump-diffusion model. Under the criterion for maximizing the expected exponential utility of terminal wealth, optimal strategy and optimal value function are derived by applying the stochastic dynamic programming approach. Our model and results extend some of the existing results in the literature, and the economic implications of our findings are illustrated. Numerical examples show that considering ambiguity and reinsurance brings utility enhancements.

Suggested Citation

  • Danping Li & Yan Zeng & Hailiang Yang, 2018. "Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(2), pages 145-171, February.
  • Handle: RePEc:taf:sactxx:v:2018:y:2018:i:2:p:145-171
    DOI: 10.1080/03461238.2017.1309679
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2017.1309679
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2017.1309679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    2. Feng, Yang & Siu, Tak Kuen & Zhu, Jinxia, 2024. "Optimal payout strategies when Bruno de Finetti meets model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 148-164.
    3. Chen, Dengsheng & He, Yong & Li, Ziqiang, 2023. "Robust optimal reinsurance–investment for α-maxmin mean–variance utility under Heston’s SV model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    4. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    5. Tong Qian & Cuixia Chen & Weijun Yin & Bing Liu, 2024. "Optimal Investment-reinsurance Strategies for an Insurer with Options Trading Under Model Ambiguity," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-21, December.
    6. Qiang Zhang & Qianqian Cui, 2024. "Robust Investment and Proportional Reinsurance Strategy with Delay and Jumps in a Stochastic Stackelberg Differential Game," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-34, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2018:y:2018:i:2:p:145-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.