IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i1p93-103.html
   My bibliography  Save this article

On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm

Author

Listed:
  • Muyldermans, L.
  • Pang, G.

Abstract

The Multi-Compartment Vehicle Routing Problem involves clients with a demand for different products and vehicles with several compartments to co-transport these commodities. We present a local search procedure that explores well-known moves (2-opt, cross, exchange, relocate), and exploits the mechanisms of neighbour lists and marking to speed up the searches. We combine the procedure with the Guided Local Search meta-heuristic to improve solution quality. Extensive computational results are reported to uncover when co-distribution by vehicles with multiple compartments is better than separate distribution with un-partitioned trucks. Sensitivities in key problem parameters including, client density and location of the depot, vehicle capacity, client demand and number of commodities are investigated.

Suggested Citation

  • Muyldermans, L. & Pang, G., 2010. "On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm," European Journal of Operational Research, Elsevier, vol. 206(1), pages 93-103, October.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:93-103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00125-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Beullens, Patrick & Muyldermans, Luc & Cattrysse, Dirk & Van Oudheusden, Dirk, 2003. "A guided local search heuristic for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 147(3), pages 629-643, June.
    3. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    4. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    5. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    6. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    7. Gerald G. Brown & Carol J. Ellis & Glenn W. Graves & David Ronen, 1987. "Real-Time, Wide Area Dispatch of Mobil Tank Trucks," Interfaces, INFORMS, vol. 17(1), pages 107-120, February.
    8. Cornillier, Fabien & Boctor, Fayez F. & Laporte, Gilbert & Renaud, Jacques, 2008. "A heuristic for the multi-period petrol station replenishment problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 295-305, December.
    9. Avella, Pasquale & Boccia, Maurizio & Sforza, Antonio, 2004. "Solving a fuel delivery problem by heuristic and exact approaches," European Journal of Operational Research, Elsevier, vol. 152(1), pages 170-179, January.
    10. Gerald G. Brown & Glenn W. Graves, 1981. "Real-Time Dispatch of Petroleum Tank Trucks," Management Science, INFORMS, vol. 27(1), pages 19-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    2. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    3. Samira Mirzaei & Sanne Wøhlk, 2019. "A Branch-and-Price algorithm for two multi-compartment vehicle routing problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 1-33, March.
    4. Furkan Uzar, M. & Çatay, Bülent, 2012. "Distribution planning of bulk lubricants at BP Turkey," Omega, Elsevier, vol. 40(6), pages 870-881.
    5. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    7. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    8. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth & Arráiz, Emely, 2014. "An iterated local search algorithm for the vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 237(2), pages 454-464.
    9. Cornillier, Fabien & Boctor, Fayez & Renaud, Jacques, 2012. "Heuristics for the multi-depot petrol station replenishment problem with time windows," European Journal of Operational Research, Elsevier, vol. 220(2), pages 361-369.
    10. Samira Mirzaei & Sanne Wøhlk, 2017. "Erratum to: A Branch-and-Price algorithm for two multi-compartment vehicle routing problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 185-218, June.
    11. Ostermeier, Manuel & Hübner, Alexander, 2018. "Vehicle selection for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 269(2), pages 682-694.
    12. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    13. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    14. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.
    15. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    16. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    17. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    18. Ries, Jana & Beullens, Patrick & Salt, David, 2012. "Instance-specific multi-objective parameter tuning based on fuzzy logic," European Journal of Operational Research, Elsevier, vol. 218(2), pages 305-315.
    19. Henriette Koch & Tino Henke & Gerhard Wäscher, 2016. "A Genetic Algorithm for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 160004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:93-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.