IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i2p627-639.html
   My bibliography  Save this article

The value of time and temperature history information for the distribution of perishables

Author

Listed:
  • Gaukler, Gary M.
  • Zuidwijk, Rob A.
  • Ketzenberg, Michael E.

Abstract

We model a supply chain that transports a perishable product from product origin to a destination market via a waypoint. The operational decision of interest is the transportation mode choice from the waypoint to the destination market, dependent on available information, including time and temperature history via RFID and sensors. We use analytical modeling to derive optimal transportation policies and generate generalizable, managerial insights. We then apply the analytical model in a numerical case study investigating the transportation of vine-ripened tomatoes from the Netherlands to the United States. Our analytical and numerical studies result in a number of interesting findings. First, the quality of sensor measurements may or may not impact the optimal policy and the decision maker can be guided accordingly. Second, better information may enable more profitable transport decisions, but doing so can have a negative impact on product quality at the destination. Third, we show that more stringent quality requirements by retailers may drive salvaging produce at the waypoint and thereby negatively impact service levels, despite penalties. Fourth, we identify the factors that drive the value of information under multiple information scenarios and establish both the direction and magnitude of their effects. Finally, both the analytical and numerical findings indicate that the information value is robust under measurement error. Thus, even if measurements are not perfect, RFID and sensor technology enabled information can be used to dynamically adjust forwarding decisions for perishable products, which can yield significant improvements to operational performance.

Suggested Citation

  • Gaukler, Gary M. & Zuidwijk, Rob A. & Ketzenberg, Michael E., 2023. "The value of time and temperature history information for the distribution of perishables," European Journal of Operational Research, Elsevier, vol. 310(2), pages 627-639.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:627-639
    DOI: 10.1016/j.ejor.2023.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172300200X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourland, Karla E. & Powell, Stephen G. & Pyke, David F., 1996. "Exploiting timely demand information to reduce inventories," European Journal of Operational Research, Elsevier, vol. 92(2), pages 239-253, July.
    2. Ketzenberg, Michael E. & Rosenzweig, Eve D. & Marucheck, Ann E. & Metters, Richard D., 2007. "A framework for the value of information in inventory replenishment," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1230-1250, November.
    3. Lejarza, Fernando & Baldea, Michael, 2022. "An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products," European Journal of Operational Research, Elsevier, vol. 297(3), pages 890-903.
    4. Rob A. Zuidwijk & Albert W. Veenstra, 2015. "The Value of Information in Container Transport," Transportation Science, INFORMS, vol. 49(3), pages 675-685, August.
    5. Tijskens, L. M. M. & Polderdijk, J. J., 1996. "A generic model for keeping quality of vegetable produce during storage and distribution," Agricultural Systems, Elsevier, vol. 51(4), pages 431-452, August.
    6. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    7. Michael Ketzenberg & Jacqueline Bloemhof & Gary Gaukler, 2015. "Managing Perishables with Time and Temperature History," Production and Operations Management, Production and Operations Management Society, vol. 24(1), pages 54-70, January.
    8. Aiello, Giuseppe & Enea, Mario & Muriana, Cinzia, 2015. "The expected value of the traceability information," European Journal of Operational Research, Elsevier, vol. 244(1), pages 176-186.
    9. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    10. Ketzenberg, Michael & Gaukler, Gary & Salin, Victoria, 2018. "Expiration dates and order quantities for perishables," European Journal of Operational Research, Elsevier, vol. 266(2), pages 569-584.
    11. Siawsolit, Chokdee & Gaukler, Gary M., 2021. "Offsetting omnichannel grocery fulfillment cost through advance ordering of perishables," International Journal of Production Economics, Elsevier, vol. 239(C).
    12. Gaukler, Gary & Ketzenberg, Michael & Salin, Victoria, 2017. "Establishing dynamic expiration dates for perishables: An application of rfid and sensor technology," International Journal of Production Economics, Elsevier, vol. 193(C), pages 617-632.
    13. Grunow, Martin & Piramuthu, Selwyn, 2013. "RFID in highly perishable food supply chains – Remaining shelf life to supplant expiry date?," International Journal of Production Economics, Elsevier, vol. 146(2), pages 717-727.
    14. Buisman, M.E. & Haijema, R. & Bloemhof-Ruwaard, J.M., 2019. "Discounting and dynamic shelf life to reduce fresh food waste at retailers," International Journal of Production Economics, Elsevier, vol. 209(C), pages 274-284.
    15. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    16. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    17. Srinagesh Gavirneni & Roman Kapuscinski & Sridhar Tayur, 1999. "Value of Information in Capacitated Supply Chains," Management Science, INFORMS, vol. 45(1), pages 16-24, January.
    18. Mark Ferguson & Michael E. Ketzenberg, 2006. "Information Sharing to Improve Retail Product Freshness of Perishables," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 57-73, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketzenberg, M.E. & Bloemhof-Ruwaard, J.M., 2009. "The Value of RFID Technology Enabled Information to Manage Perishables," ERIM Report Series Research in Management ERS-2009-020-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    3. Yang, Ya & Chi, Huihui & Tang, Ou & Zhou, Wei & Fan, Tijun, 2019. "Cross perishable effect on optimal inventory preservation control," European Journal of Operational Research, Elsevier, vol. 276(3), pages 998-1012.
    4. Gaukler, Gary & Ketzenberg, Michael & Salin, Victoria, 2017. "Establishing dynamic expiration dates for perishables: An application of rfid and sensor technology," International Journal of Production Economics, Elsevier, vol. 193(C), pages 617-632.
    5. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    6. Ketzenberg, Michael, 2009. "The value of information in a capacitated closed loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(2), pages 491-503, October.
    7. Siawsolit, Chokdee & Gaukler, Gary M., 2021. "Offsetting omnichannel grocery fulfillment cost through advance ordering of perishables," International Journal of Production Economics, Elsevier, vol. 239(C).
    8. Hansen, Ole & Transchel, Sandra & Friedrich, Hanno, 2023. "Replenishment strategies for lost sales inventory systems of perishables under demand and lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 308(2), pages 661-675.
    9. Besik, Deniz & Nagurney, Anna, 2017. "Quality in competitive fresh produce supply chains with application to farmers' markets," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 62-76.
    10. Santos, Maria João & Martins, Sara & Amorim, Pedro & Almada-Lobo, Bernardo, 2022. "On the impact of adjusting the minimum life on receipt (MLOR) criterion in food supply chains," Omega, Elsevier, vol. 112(C).
    11. Ketzenberg, Michael E. & Rosenzweig, Eve D. & Marucheck, Ann E. & Metters, Richard D., 2007. "A framework for the value of information in inventory replenishment," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1230-1250, November.
    12. Ge, Houtian & Goetz, Stephan J. & Cleary, Rebecca & Yi, Jing & Gómez, Miguel I., 2022. "Facility locations in the fresh produce supply chain: An integration of optimization and empirical methods," International Journal of Production Economics, Elsevier, vol. 249(C).
    13. Song, Yang & Fan, Tijun & Tang, Yuewu & Xu, Chang, 2021. "Omni-channel strategies for fresh produce with extra losses in-store," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    14. Magdalena Leithner & Christian Fikar, 2022. "A simulation model to investigate impacts of facilitating quality data within organic fresh food supply chains," Annals of Operations Research, Springer, vol. 314(2), pages 529-550, July.
    15. Besik, Deniz & Nagurney, Anna & Dutta, Pritha, 2023. "An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality," European Journal of Operational Research, Elsevier, vol. 307(1), pages 364-381.
    16. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    17. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    18. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    19. Ketzenberg, M.E. & van der Laan, E.A. & Teunter, R.H., 2004. "The Value of Information in Reverse Logistics," ERIM Report Series Research in Management ERS-2004-053-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Yue, Xiaohang & Liu, John, 2006. "Demand forecast sharing in a dual-channel supply chain," European Journal of Operational Research, Elsevier, vol. 174(1), pages 646-667, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:627-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.