IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v307y2023i1p364-381.html
   My bibliography  Save this article

An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality

Author

Listed:
  • Besik, Deniz
  • Nagurney, Anna
  • Dutta, Pritha

Abstract

In this paper, we develop an integrated multitiered competitive agricultural supply chain network model in which agricultural firms and processing firms compete to sell their differentiated products. The focus here is on fresh produce and minimally processed such agricultural products, with quality also captured. The competition among agricultural firms and processing firms is studied through game theory, where the governing Cournot–Nash equilibrium conditions correspond to a variational inequality problem. The algorithm, at each iteration, yields explicit closed form expressions for the agricultural product path flows, the agricultural product shipments from agricultural firms to the processing firms, and the Lagrange multipliers. A numerical study consisting of several supply chain disruption scenarios demonstrates the applicability of our modeling framework.

Suggested Citation

  • Besik, Deniz & Nagurney, Anna & Dutta, Pritha, 2023. "An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality," European Journal of Operational Research, Elsevier, vol. 307(1), pages 364-381.
  • Handle: RePEc:eee:ejores:v:307:y:2023:i:1:p:364-381
    DOI: 10.1016/j.ejor.2022.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722006439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Nahmias, 2011. "Perishable Inventory Systems," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-7999-5, April.
    2. Ferrer, Juan-Carlos & Mac Cawley, Alejandro & Maturana, Sergio & Toloza, Sergio & Vera, Jorge, 2008. "An optimization approach for scheduling wine grape harvest operations," International Journal of Production Economics, Elsevier, vol. 112(2), pages 985-999, April.
    3. Kopanos, Georgios M. & Puigjaner, Luis & Georgiadis, Michael C., 2012. "Simultaneous production and logistics operations planning in semicontinuous food industries," Omega, Elsevier, vol. 40(5), pages 634-650.
    4. Jonkman, Jochem & Barbosa-Póvoa, Ana P. & Bloemhof, Jacqueline M., 2019. "Integrating harvesting decisions in the design of agro-food supply chains," European Journal of Operational Research, Elsevier, vol. 276(1), pages 247-258.
    5. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    6. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    7. Yamada, Tadashi & Imai, Koji & Nakamura, Takamasa & Taniguchi, Eiichi, 2011. "A supply chain-transport supernetwork equilibrium model with the behaviour of freight carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 887-907.
    8. Chen, Po-Chi & Yu, Ming-Miin & Shih, Jou-Chen & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2019. "A reassessment of the Global Food Security Index by using a hierarchical data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 272(2), pages 687-698.
    9. Besik, Deniz & Nagurney, Anna, 2017. "Quality in competitive fresh produce supply chains with application to farmers' markets," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 62-76.
    10. June Dong & Ding Zhang & Hong Yan & Anna Nagurney, 2005. "Multitiered Supply Chain Networks: Multicriteria Decision—Making Under Uncertainty," Annals of Operations Research, Springer, vol. 135(1), pages 155-178, March.
    11. Lejarza, Fernando & Baldea, Michael, 2022. "An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products," European Journal of Operational Research, Elsevier, vol. 297(3), pages 890-903.
    12. Dafermos, Stella & Nagurney, Anna, 1987. "Oligopolistic and competitive behavior of spatially separated markets," Regional Science and Urban Economics, Elsevier, vol. 17(2), pages 245-254.
    13. Timothy J. Lowe & Paul V. Preckel, 2004. "Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 201-208.
    14. Tijskens, L. M. M. & Polderdijk, J. J., 1996. "A generic model for keeping quality of vegetable produce during storage and distribution," Agricultural Systems, Elsevier, vol. 51(4), pages 431-452, August.
    15. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    16. Sengul Orgut, Irem & Ivy, Julie S. & Uzsoy, Reha & Hale, Charlie, 2018. "Robust optimization approaches for the equitable and effective distribution of donated food," European Journal of Operational Research, Elsevier, vol. 269(2), pages 516-531.
    17. Yu, Min & Nagurney, Anna, 2013. "Competitive food supply chain networks with application to fresh produce," European Journal of Operational Research, Elsevier, vol. 224(2), pages 273-282.
    18. van der Vorst, Jack G. A. J. & Beulens, Adrie J. M. & van Beek, Paul, 2000. "Modelling and simulating multi-echelon food systems," European Journal of Operational Research, Elsevier, vol. 122(2), pages 354-366, April.
    19. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    20. Nagurney, Anna & Dong, June & Zhang, Ding, 2002. "A supply chain network equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 281-303, September.
    21. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    22. Widodo, K.H. & Nagasawa, H. & Morizawa, K. & Ota, M., 2006. "A periodical flowering-harvesting model for delivering agricultural fresh products," European Journal of Operational Research, Elsevier, vol. 170(1), pages 24-43, April.
    23. Li, Dong & Nagurney, Anna, 2015. "A general multitiered supply chain network model of quality competition with suppliers," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 336-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Nagurney & Dana Hassani & Oleg Nivievskyi & Pavlo Martyshev, 2023. "Exchange rates and multicommodity international trade: insights from spatial price equilibrium modeling with policy instruments via variational inequalities," Journal of Global Optimization, Springer, vol. 87(1), pages 1-30, September.
    2. Nagurney, Anna & Hassani, Dana & Nivievskyi, Oleg & Martyshev, Pavlo, 2024. "Multicommodity international agricultural trade network equilibrium: Competition for limited production and transportation capacity under disaster scenarios with implications for food security," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1127-1142.
    3. Zhangwei Feng & Peng Jin & Guiping Li, 2023. "Investment Decision of Blockchain Technology in Fresh Food Supply Chains Considering Misreporting Behavior," Sustainability, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Min & Nagurney, Anna, 2013. "Competitive food supply chain networks with application to fresh produce," European Journal of Operational Research, Elsevier, vol. 224(2), pages 273-282.
    2. V. R. Ghezavati & S. Hooshyar & R. Tavakkoli-Moghaddam, 2017. "A Benders’ decomposition algorithm for optimizing distribution of perishable products considering postharvest biological behavior in agri-food supply chain: a case study of tomato," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 29-54, March.
    3. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    4. Agustina, Dwi & Lee, C.K.M. & Piplani, Rajesh, 2014. "Vehicle scheduling and routing at a cross docking center for food supply chains," International Journal of Production Economics, Elsevier, vol. 152(C), pages 29-41.
    5. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    6. Besik, Deniz & Nagurney, Anna, 2017. "Quality in competitive fresh produce supply chains with application to farmers' markets," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 62-76.
    7. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    8. Omar Ahumada & J. Villalobos, 2011. "A tactical model for planning the production and distribution of fresh produce," Annals of Operations Research, Springer, vol. 190(1), pages 339-358, October.
    9. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    10. Rana Azab & Rana S. Mahmoud & Rahma Elbehery & Mohamed Gheith, 2023. "A Bi-Objective Mixed-Integer Linear Programming Model for a Sustainable Agro-Food Supply Chain with Product Perishability and Environmental Considerations," Logistics, MDPI, vol. 7(3), pages 1-29, July.
    11. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    12. Wang, Haiyan & Zhan, Sha-lei & Ng, Chi To & Cheng, T.C.E., 2020. "Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach," International Journal of Production Economics, Elsevier, vol. 225(C).
    13. Dilupa Nakandala & Henry Lau & Paul K.C. Shum, 2017. "A lateral transshipment model for perishable inventory management," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5341-5354, September.
    14. Ge, Houtian & Goetz, Stephan J. & Cleary, Rebecca & Yi, Jing & Gómez, Miguel I., 2022. "Facility locations in the fresh produce supply chain: An integration of optimization and empirical methods," International Journal of Production Economics, Elsevier, vol. 249(C).
    15. Nagurney, Anna & Saberi, Sara & Shukla, Shivani & Floden, Jonas, 2015. "Supply chain network competition in price and quality with multiple manufacturers and freight service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 248-267.
    16. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    17. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    18. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    19. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    20. Chan, Chi Kin & Zhou, Yan & Wong, Kar Hung, 2019. "An equilibrium model of the supply chain network under multi-attribute behaviors analysis," European Journal of Operational Research, Elsevier, vol. 275(2), pages 514-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:307:y:2023:i:1:p:364-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.