IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p1435-1449.html
   My bibliography  Save this article

Improving defensive air battle management by solving a stochastic dynamic assignment problem via approximate dynamic programming

Author

Listed:
  • Liles, Joseph M.
  • Robbins, Matthew J.
  • Lunday, Brian J.

Abstract

Military air battle managers face several challenges when directing operations during quickly evolving combat scenarios. These scenarios require rapid assignment decisions to engage moving targets having dynamic flight paths. In defensive operations, the success of a sequence of air battle management decisions is reflected by the friendly force’s ability to maintain air superiority and defend friendly assets. We develop a Markov decision process (MDP) model of a stochastic dynamic assignment problem, named the Air Battle Management Problem (ABMP), wherein a set of unmanned combat aerial vehicles (UCAV) must defend an asset from cruise missiles arriving stochastically over time. Attaining an exact solution using traditional dynamic programming techniques is computationally intractable. Hence, we utilize an approximate dynamic programming (ADP) technique known as approximate policy iteration with least squares temporal differences (API-LSTD) learning to find high-quality solutions to the ABMP. We create a simulation environment in conjunction with a generic yet representative combat scenario to illustrate how the ADP solution compares in quality to a reasonable, closest-intercept benchmark policy. Our API-LSTD policy improves mean success rate by 2.8% compared to the benchmark policy and offers an 81.7% increase in the frequency with which the policy performs perfectly. Moreover, we find the increased success rate of the ADP policy is, on average, equivalent to the success rate attained by the benchmark policy when using a 20% faster UCAV. These results inform military force management and defense acquisition decisions and aid in the development of more effective tactics, techniques, and procedures.

Suggested Citation

  • Liles, Joseph M. & Robbins, Matthew J. & Lunday, Brian J., 2023. "Improving defensive air battle management by solving a stochastic dynamic assignment problem via approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1435-1449.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1435-1449
    DOI: 10.1016/j.ejor.2022.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    2. Gregory Levitin & Kjell Husken & Hanoch Ben-Haim, 2011. "Active And Passive Defense Against Multiple Attack Facilities," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(04), pages 431-444.
    3. Robbins, Matthew J. & Jenkins, Phillip R. & Bastian, Nathaniel D. & Lunday, Brian J., 2020. "Approximate dynamic programming for the aeromedical evacuation dispatching problem: Value function approximation utilizing multiple level aggregation," Omega, Elsevier, vol. 91(C).
    4. Martello, Silvano & Toth, Paolo, 1995. "A note on exact algorithms for the bottleneck generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 83(3), pages 711-712, June.
    5. Jenkins, Phillip R. & Robbins, Matthew J. & Lunday, Brian J., 2021. "Approximate dynamic programming for the military aeromedical evacuation dispatching, preemption-rerouting, and redeployment problem," European Journal of Operational Research, Elsevier, vol. 290(1), pages 132-143.
    6. Fuhrmann, Matthew & Horowitz, Michael C., 2017. "Droning On: Explaining the Proliferation of Unmanned Aerial Vehicles," International Organization, Cambridge University Press, vol. 71(2), pages 397-418, April.
    7. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2021. "Approximate Dynamic Programming for Military Medical Evacuation Dispatching Policies," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 2-26, January.
    8. Davis, Michael T. & Robbins, Matthew J. & Lunday, Brian J., 2017. "Approximate dynamic programming for missile defense interceptor fire control," European Journal of Operational Research, Elsevier, vol. 259(3), pages 873-886.
    9. Rebekah S. McKenna & Matthew J. Robbins & Brian J. Lunday & Ian M. McCormack, 2020. "Approximate dynamic programming for the military inventory routing problem," Annals of Operations Research, Springer, vol. 288(1), pages 391-416, May.
    10. Michael Z. Spivey & Warren B. Powell, 2004. "The Dynamic Assignment Problem," Transportation Science, INFORMS, vol. 38(4), pages 399-419, November.
    11. Burkard, Rainer E., 1984. "Quadratic assignment problems," European Journal of Operational Research, Elsevier, vol. 15(3), pages 283-289, March.
    12. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    13. Martello, Silvano & Toth, Paolo, 1995. "The bottleneck generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 83(3), pages 621-638, June.
    14. Cattrysse, Dirk G. & Van Wassenhove, Luk N., 1992. "A survey of algorithms for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 260-272, August.
    15. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    16. Rettke, Aaron J. & Robbins, Matthew J. & Lunday, Brian J., 2016. "Approximate dynamic programming for the dispatch of military medical evacuation assets," European Journal of Operational Research, Elsevier, vol. 254(3), pages 824-839.
    17. Warren B. Powell, 1996. "A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers," Transportation Science, INFORMS, vol. 30(3), pages 195-219, August.
    18. Zeghal, F.M. & Minoux, M., 2006. "Modeling and solving a Crew Assignment Problem in air transportation," European Journal of Operational Research, Elsevier, vol. 175(1), pages 187-209, November.
    19. Hausken, Kjell & Moxnes, John F., 2002. "Stochastic conditional and unconditional warfare," European Journal of Operational Research, Elsevier, vol. 140(1), pages 61-87, July.
    20. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    21. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    22. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Christian Billing & Florian Jaehn & Thomas Wensing, 2020. "Fair task allocation problem," Annals of Operations Research, Springer, vol. 284(1), pages 131-146, January.
    3. Jenkins, Phillip R. & Robbins, Matthew J. & Lunday, Brian J., 2021. "Approximate dynamic programming for the military aeromedical evacuation dispatching, preemption-rerouting, and redeployment problem," European Journal of Operational Research, Elsevier, vol. 290(1), pages 132-143.
    4. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    5. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    6. Gülpınar, Nalan & Çanakoğlu, Ethem & Branke, Juergen, 2018. "Heuristics for the stochastic dynamic task-resource allocation problem with retry opportunities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 291-303.
    7. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    8. Gao, Kaiye & Yan, Xiangbin & Liu, Xiang-dong & Peng, Rui, 2019. "Object defence of a single object with preventive strike of random effect," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 209-219.
    9. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    10. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    11. D. J. White, 1993. "A parametric‐based heuristic program for the quadratic assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 553-568, June.
    12. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    13. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    14. Wu, Di & Xiao, Hui & Peng, Rui, 2018. "Object defense with preventive strike and false targets," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 76-80.
    15. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    16. Sonia & Puri, M.C., 2008. "Two-stage time minimizing assignment problem," Omega, Elsevier, vol. 36(5), pages 730-740, October.
    17. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    18. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
    19. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
    20. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1435-1449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.