IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v91y2020ics0305048318304699.html
   My bibliography  Save this article

Approximate dynamic programming for the aeromedical evacuation dispatching problem: Value function approximation utilizing multiple level aggregation

Author

Listed:
  • Robbins, Matthew J.
  • Jenkins, Phillip R.
  • Bastian, Nathaniel D.
  • Lunday, Brian J.

Abstract

Sequential resource allocation decision-making for the military medical evacuation of wartime casualties consists of identifying which available aeromedical evacuation (MEDEVAC) assets to dispatch in response to each casualty event. These sequential decisions are complicated due to uncertainty in casualty demand (i.e., severity, number, and location) and service times. In this research, we present a Markov decision process model solved using a hierarchical aggregation value function approximation scheme within an approximate policy iteration algorithmic framework. The model seeks to optimize this sequential resource allocation decision under uncertainty of how to best dispatch MEDEVAC assets to calls for service. The policies determined via our approximate dynamic programming (ADP) approach are compared to optimal military MEDEVAC dispatching policies for two small-scale problem instances and are compared to a closest-available MEDEVAC dispatching policy that is typically implemented in practice for a large-scale problem instance. Results indicate that our proposed approximation scheme provides high-quality, scalable dispatching policies that are more easily employed by military medical planners in the field. The identified ADP policies attain 99.8% and 99.5% optimal for the 6- and 12-zone problem instances investigated, as well as 9.6%, 9.2%, and 12.4% improvement over the closest-MEDEVAC policy for the 6-, 12-, and 34-zone problem instances investigated.

Suggested Citation

  • Robbins, Matthew J. & Jenkins, Phillip R. & Bastian, Nathaniel D. & Lunday, Brian J., 2020. "Approximate dynamic programming for the aeromedical evacuation dispatching problem: Value function approximation utilizing multiple level aggregation," Omega, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318304699
    DOI: 10.1016/j.omega.2018.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318304699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Ignall & G. Carter & K. Rider, 1982. "An Algorithm for the Initial Dispatch of Fire Companies," Management Science, INFORMS, vol. 28(4), pages 366-378, April.
    2. S Lee, 2011. "The role of preparedness in ambulance dispatching," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1888-1897, October.
    3. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    4. Andrzej Ruszczyński, 2010. "Commentary ---Post-Decision States and Separable Approximations Are Powerful Tools of Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 20-22, February.
    5. M S Daskin & A Haghani, 1984. "Multiple Vehicle Routing and Dispatching to an Emergency Scene," Environment and Planning A, , vol. 16(10), pages 1349-1359, October.
    6. Rettke, Aaron J. & Robbins, Matthew J. & Lunday, Brian J., 2016. "Approximate dynamic programming for the dispatch of military medical evacuation assets," European Journal of Operational Research, Elsevier, vol. 254(3), pages 824-839.
    7. Miguel A. Lejeune & Francois Margot, 2018. "Aeromedical Battlefield Evacuation Under Endogenous Uncertainty in Casualty Delivery Times," Management Science, INFORMS, vol. 64(12), pages 5481-5496, December.
    8. S Lee, 2011. "The role of preparedness in ambulance dispatching," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1888-1897, October.
    9. Matthew S. Maxwell & Mateo Restrepo & Shane G. Henderson & Huseyin Topaloglu, 2010. "Approximate Dynamic Programming for Ambulance Redeployment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 266-281, May.
    10. T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
    11. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2018. "Examining military medical evacuation dispatching policies utilizing a Markov decision process model of a controlled queueing system," Annals of Operations Research, Springer, vol. 271(2), pages 641-678, December.
    12. Arthur J. Swersey, 1982. "A Markovian Decision Model for Deciding How Many Fire Companies to Dispatch," Management Science, INFORMS, vol. 28(4), pages 352-365, April.
    13. Laura McLay & Maria Mayorga, 2013. "A model for optimally dispatching ambulances to emergency calls with classification errors in patient priorities," IISE Transactions, Taylor & Francis Journals, vol. 45(1), pages 1-24.
    14. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rempel, M. & Cai, J., 2021. "A review of approximate dynamic programming applications within military operations research," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Liles, Joseph M. & Robbins, Matthew J. & Lunday, Brian J., 2023. "Improving defensive air battle management by solving a stochastic dynamic assignment problem via approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1435-1449.
    3. Alkaabneh, Faisal & Diabat, Ali & Gao, Huaizhu Oliver, 2021. "A unified framework for efficient, effective, and fair resource allocation by food banks using an Approximate Dynamic Programming approach," Omega, Elsevier, vol. 100(C).
    4. Jenkins, Phillip R. & Robbins, Matthew J. & Lunday, Brian J., 2021. "Approximate dynamic programming for the military aeromedical evacuation dispatching, preemption-rerouting, and redeployment problem," European Journal of Operational Research, Elsevier, vol. 290(1), pages 132-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2021. "Approximate Dynamic Programming for Military Medical Evacuation Dispatching Policies," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 2-26, January.
    2. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    3. Rettke, Aaron J. & Robbins, Matthew J. & Lunday, Brian J., 2016. "Approximate dynamic programming for the dispatch of military medical evacuation assets," European Journal of Operational Research, Elsevier, vol. 254(3), pages 824-839.
    4. Jenkins, Phillip R. & Robbins, Matthew J. & Lunday, Brian J., 2021. "Approximate dynamic programming for the military aeromedical evacuation dispatching, preemption-rerouting, and redeployment problem," European Journal of Operational Research, Elsevier, vol. 290(1), pages 132-143.
    5. Amir Ali Nasrollahzadeh & Amin Khademi & Maria E. Mayorga, 2018. "Real-Time Ambulance Dispatching and Relocation," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 467-480, July.
    6. Akbari, Leilanaz & Kazemi, Ahmad & Salari, Majid, 2023. "Operational planning of vehicles for rescue and relief operations considering the unavailability of the relocated vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    7. van Barneveld, T.C. & Bhulai, S. & van der Mei, R.D., 2016. "The effect of ambulance relocations on the performance of ambulance service providers," European Journal of Operational Research, Elsevier, vol. 252(1), pages 257-269.
    8. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    10. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2018. "Examining military medical evacuation dispatching policies utilizing a Markov decision process model of a controlled queueing system," Annals of Operations Research, Springer, vol. 271(2), pages 641-678, December.
    11. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    12. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    13. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    14. Drent, Collin & Keizer, Minou Olde & Houtum, Geert-Jan van, 2020. "Dynamic dispatching and repositioning policies for fast-response service networks," European Journal of Operational Research, Elsevier, vol. 285(2), pages 583-598.
    15. Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
    16. Laura A. McLay & Maria E. Mayorga, 2013. "A Dispatching Model for Server-to-Customer Systems That Balances Efficiency and Equity," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 205-220, May.
    17. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    18. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    19. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    20. van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318304699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.