IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i2p381-394.html
   My bibliography  Save this article

An effective hybrid search algorithm for the multiple traveling repairman problem with profits

Author

Listed:
  • Ren, Jintong
  • Hao, Jin-Kao
  • Wu, Feng
  • Fu, Zhang-Hua

Abstract

The multiple traveling repairman problem with profits consists of multiple repairmen serving a subset of all customers to maximize the revenues collected through the visited customers. To address this problem, an effective hybrid search algorithm based on the memetic framework is proposed. In the proposed method, three features are integrated: a dedicated arc-based crossover to generate high-quality offspring solutions, a fast evaluation technique to reduce the complexity of navigating classical neighborhoods as well as a correcting step to ensure accurate evaluation of neighboring solutions. The performance of the algorithm on 470 benchmark instances were compared with those of the leading reference algorithms. The results show that the proposed algorithm outperforms the state-of-the-art algorithms by setting new records for 137 instances and matching the best-known results for 330 instances. The importance of the key search components of the algorithm was investigated.

Suggested Citation

  • Ren, Jintong & Hao, Jin-Kao & Wu, Feng & Fu, Zhang-Hua, 2023. "An effective hybrid search algorithm for the multiple traveling repairman problem with profits," European Journal of Operational Research, Elsevier, vol. 304(2), pages 381-394.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:381-394
    DOI: 10.1016/j.ejor.2022.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lysgaard, Jens & Wøhlk, Sanne, 2014. "A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 800-810.
    2. Vansteenwegen, Pieter & Souffriau, Wouter & Berghe, Greet Vanden & Oudheusden, Dirk Van, 2009. "A guided local search metaheuristic for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 118-127, July.
    3. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    4. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    5. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    6. Jean-Yves Potvin & Tanguy Kervahut & Bruno-Laurent Garcia & Jean-Marc Rousseau, 1996. "The Vehicle Routing Problem with Time Windows Part I: Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 158-164, May.
    7. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    8. Jean-Yves Potvin & Samy Bengio, 1996. "The Vehicle Routing Problem with Time Windows Part II: Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 165-172, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yangming & Wang, Gezi & Hao, Jin-Kao & Geng, Na & Jiang, Zhibin, 2023. "A fast tri-individual memetic search approach for the distance-based critical node problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 540-554.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenbo Zhu & J. Hu & Fengchun Wang & Yifan Xu & Rongzeng Cao, 2012. "On the tour planning problem," Annals of Operations Research, Springer, vol. 192(1), pages 67-86, January.
    2. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    3. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    4. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    5. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    6. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    7. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    8. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    9. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    10. Carrese, Stefano & Cuneo, Valerio & Nigro, Marialisa & Pizzuti, Raffaele & Ardito, Cosimo Federico & Marseglia, Guido, 2022. "Optimization of downstream fuel logistics based on road infrastructure conditions and exposure to accident events," Transport Policy, Elsevier, vol. 124(C), pages 96-105.
    11. Erika M. Herrera & Javier Panadero & Patricia Carracedo & Angel A. Juan & Elena Perez-Bernabeu, 2022. "Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    12. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    13. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    14. repec:iim:iimawp:14638 is not listed on IDEAS
    15. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    16. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    17. Bochra Rabbouch & Foued Saâdaoui & Rafaa Mraihi, 2021. "Efficient implementation of the genetic algorithm to solve rich vehicle routing problems," Operational Research, Springer, vol. 21(3), pages 1763-1791, September.
    18. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    19. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    20. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    21. Wolfgang Wörndl & Alexander Hefele & Daniel Herzog, 2017. "Recommending a sequence of interesting places for tourist trips," Information Technology & Tourism, Springer, vol. 17(1), pages 31-54, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:381-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.