IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p207-218.html
   My bibliography  Save this article

Modeling COVID-19 hospital admissions and occupancy in the Netherlands

Author

Listed:
  • Bekker, René
  • uit het Broek, Michiel
  • Koole, Ger

Abstract

We describe the models we built for predicting hospital admissions and bed occupancy of COVID-19 patients in the Netherlands. These models were used to make short-term decisions about transfers of patients between regions and for long-term policy making. For forecasting admissions we developed a new technique using linear programming. To predict occupancy we fitted residual lengths of stay and used results from queueing theory. Our models increased the accuracy of and trust in the predictions and helped manage the pandemic, minimizing the impact in terms of beds and maximizing remaining capacity for other types of care.

Suggested Citation

  • Bekker, René & uit het Broek, Michiel & Koole, Ger, 2023. "Modeling COVID-19 hospital admissions and occupancy in the Netherlands," European Journal of Operational Research, Elsevier, vol. 304(1), pages 207-218.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:207-218
    DOI: 10.1016/j.ejor.2021.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721011000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    2. Steven Littig & Mark Isken, 2007. "Short term hospital occupancy prediction," Health Care Management Science, Springer, vol. 10(1), pages 47-66, February.
    3. Marcel Goic & Mirko S Bozanic-Leal & Magdalena Badal & Leonardo J Basso, 2021. "COVID-19: Short-term forecast of ICU beds in times of crisis," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-24, January.
    4. Stef Baas & Sander Dijkstra & Aleida Braaksma & Plom Rooij & Fieke J. Snijders & Lars Tiemessen & Richard J. Boucherie, 2021. "Real-time forecasting of COVID-19 bed occupancy in wards and Intensive Care Units," Health Care Management Science, Springer, vol. 24(2), pages 402-419, June.
    5. Samuel Davis & Nasser Fard, 2020. "Theoretical bounds and approximation of the probability mass function of future hospital bed demand," Health Care Management Science, Springer, vol. 23(1), pages 20-33, March.
    6. Broyles, James R. & Cochran, Jeffery K. & Montgomery, Douglas C., 2010. "A statistical Markov chain approximation of transient hospital inpatient inventory," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1645-1657, December.
    7. R. Bekker & A. Bruin, 2010. "Time-dependent analysis for refused admissions in clinical wards," Annals of Operations Research, Springer, vol. 178(1), pages 45-65, July.
    8. David Worthington & Martin Utley & Dan Suen, 2020. "Infinite-server queueing models of demand in healthcare: A review of applications and ideas for further work," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1145-1160, August.
    9. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    10. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    11. Kortbeek, N. & Braaksma, A. & Burger, C.A.J. & Bakker, P.J.M. & Boucherie, R.J., 2015. "Flexible nurse staffing based on hourly bed census predictions," International Journal of Production Economics, Elsevier, vol. 161(C), pages 167-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael R. Johnson & Hiten Naik & Wei Siang Chan & Jesse Greiner & Matt Michaleski & Dong Liu & Bruno Silvestre & Ian P. McCarthy, 2023. "Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions," Health Care Management Science, Springer, vol. 26(3), pages 477-500, September.
    2. Dijkstra, Sander & Baas, Stef & Braaksma, Aleida & Boucherie, Richard J., 2023. "Dynamic fair balancing of COVID-19 patients over hospitals based on forecasts of bed occupancy," Omega, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    2. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    3. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    4. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    5. Dijkstra, Sander & Baas, Stef & Braaksma, Aleida & Boucherie, Richard J., 2023. "Dynamic fair balancing of COVID-19 patients over hospitals based on forecasts of bed occupancy," Omega, Elsevier, vol. 116(C).
    6. René Bekker & Paulien Koeleman, 2011. "Scheduling admissions and reducing variability in bed demand," Health Care Management Science, Springer, vol. 14(3), pages 237-249, September.
    7. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    8. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    9. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    10. Alessandro Bitetto & Paola Cerchiello & Charilaos Mertzanis, 2021. "A data-driven approach to measuring epidemiological susceptibility risk around the world," DEM Working Papers Series 200, University of Pavia, Department of Economics and Management.
    11. Xi, Mengjie & Liu, Yang & Fang, Wei & Feng, Taiwen, 2024. "Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective," International Journal of Production Economics, Elsevier, vol. 267(C).
    12. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    13. Xiang Zhong & Jie Song & Jingshan Li & Susan M. Ertl & Lauren Fiedler, 2016. "Design and analysis of gastroenterology (GI) clinic in Digestive Health Center of University of Wisconsin Health," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 90-119, June.
    14. Ranveer Singh Rana & Dinesh Kumar & Kanika Prasad & K. Mathiyazhagan, 2024. "Mitigating the impact of demand disruption on perishable inventory in a two-warehouse system," Operations Management Research, Springer, vol. 17(2), pages 469-504, June.
    15. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    16. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    17. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    18. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    19. Yariv Marmor & Thomas Rohleder & David Cook & Todd Huschka & Jeffrey Thompson, 2013. "Recovery bed planning in cardiovascular surgery: a simulation case study," Health Care Management Science, Springer, vol. 16(4), pages 314-327, December.
    20. Costase Ndayishimiye & Christoph Sowada & Patrycja Dyjach & Agnieszka Stasiak & John Middleton & Henrique Lopes & Katarzyna Dubas-Jakóbczyk, 2022. "Associations between the COVID-19 Pandemic and Hospital Infrastructure Adaptation and Planning—A Scoping Review," IJERPH, MDPI, vol. 19(13), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.