IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i4p725-746.html
   My bibliography  Save this article

Perturbation-Based Thresholding Search for Packing Equal Circles and Spheres

Author

Listed:
  • Xiangjing Lai

    (Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Jin-Kao Hao

    (Laboratoire d’Etude et de Recherche en Informatique d’Angers (LERIA), Université d’Angers, 49045 Angers, France)

  • Renbin Xiao

    (School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Fred Glover

    (Electrical, Computer & Energy Engineering (ECEE)—College of Engineering & Applied Science, University of Colorado, Boulder, Colorado 80309)

Abstract

This paper presents an effective perturbation-based thresholding search for two popular and challenging packing problems with minimal containers: packing N identical circles in a square and packing N identical spheres in a cube. Following the penalty function approach, we handle these constrained optimization problems by solving a series of unconstrained optimization subproblems with fixed containers. The proposed algorithm relies on a two-phase search strategy that combines a thresholding search method reinforced by two general-purpose perturbation operators and a container adjustment method. The performance of the algorithm is assessed relative to a large number of benchmark instances widely studied in the literature. Computational results show a high performance of the algorithm on both problems compared with the state-of-the-art results. For circle packing, the algorithm improves 156 best-known results (new upper bounds) in the range of 2 ≤ N ≤ 400 and matches 242 other best-known results. For sphere packing, the algorithm improves 66 best-known results in the range of 2 ≤ N ≤ 200 , whereas matching the best-known results for 124 other instances. Experimental analyses are conducted to shed light on the main search ingredients of the proposed algorithm consisting of the two-phase search strategy, the mixed perturbation and the parameters.

Suggested Citation

  • Xiangjing Lai & Jin-Kao Hao & Renbin Xiao & Fred Glover, 2023. "Perturbation-Based Thresholding Search for Packing Equal Circles and Spheres," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 725-746, July.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:4:p:725-746
    DOI: 10.1287/ijoc.2023.1290
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.1290
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.1290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhengguan Dai & Kathleen Xu & Melkior Ornik, 2021. "Repulsion-based p-dispersion with distance constraints in non-convex polygons," Annals of Operations Research, Springer, vol. 307(1), pages 75-91, December.
    2. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    3. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    4. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    5. Huang, Wenqi & Ye, Tao, 2011. "Global optimization method for finding dense packings of equal circles in a circle," European Journal of Operational Research, Elsevier, vol. 210(3), pages 474-481, May.
    6. A. Grosso & A. Jamali & M. Locatelli & F. Schoen, 2010. "Solving the problem of packing equal and unequal circles in a circular container," Journal of Global Optimization, Springer, vol. 47(1), pages 63-81, May.
    7. Artan Dimnaku & Rex Kincaid & Michael Trosset, 2005. "Approximate Solutions of Continuous Dispersion Problems," Annals of Operations Research, Springer, vol. 136(1), pages 65-80, April.
    8. Anthony V. Fiacco & Garth P. McCormick, 1964. "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming," Management Science, INFORMS, vol. 10(4), pages 601-617, July.
    9. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    10. B. Addis & M. Locatelli & F. Schoen, 2008. "Disk Packing in a Square: A New Global Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 516-524, November.
    11. López, C.O. & Beasley, J.E., 2011. "A heuristic for the circle packing problem with a variety of containers," European Journal of Operational Research, Elsevier, vol. 214(3), pages 512-525, November.
    12. Jun Pei & Zorica Dražić & Milan Dražić & Nenad Mladenović & Panos M. Pardalos, 2019. "Continuous Variable Neighborhood Search (C-VNS) for Solving Systems of Nonlinear Equations," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 235-250, April.
    13. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    14. Jonathan P. K. Doye & Robert H. Leary & Marco Locatelli & Fabio Schoen, 2004. "Global Optimization of Morse Clusters by Potential Energy Transformations," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 371-379, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
    2. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    3. HARCSA Imre Milán & KOVÁCS Sándor & NÁBRÁDI András, 2020. "Economic Analysis Of Subcontract Distilleries By Simulation Modeling Method," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 50-63, July.
    4. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    5. B. Addis & M. Locatelli & F. Schoen, 2008. "Disk Packing in a Square: A New Global Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 516-524, November.
    6. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    7. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    8. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Other publications TiSEM 1b5d18c7-b66f-4a9f-838c-b, Tilburg University, School of Economics and Management.
    9. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    10. Locatelli, Marco & Schoen, Fabio, 2012. "Local search based heuristics for global optimization: Atomic clusters and beyond," European Journal of Operational Research, Elsevier, vol. 222(1), pages 1-9.
    11. Jing Zhang & Jin Xu & Kai Jia & Yimin Yin & Zhengming Wang, 2019. "Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    12. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    13. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    14. Mu, Weiyan & Xiong, Shifeng, 2018. "A class of space-filling designs and their projection properties," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 129-134.
    15. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    16. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    17. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    18. Wang, Yingcong & Wang, Yanfeng & Sun, Junwei & Huang, Chun & Zhang, Xuncai, 2019. "A stimulus–response-based allocation method for the circle packing problem with equilibrium constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 232-247.
    19. Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Other publications TiSEM fe73dc8b-20d6-4f50-95eb-f, Tilburg University, School of Economics and Management.
    20. Zhu, Dingju, 2016. "Quasi-human seniority-order algorithm for unequal circles packing," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 506-517.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:4:p:725-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.