IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i1p296-308.html
   My bibliography  Save this article

Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response

Author

Listed:
  • Lee, Hyun-Rok
  • Lee, Taesik

Abstract

Disaster response operations typically involve multiple decision-makers, and each decision-maker needs to make its decisions given only incomplete information on the current situation. To account for these characteristics – decision making by multiple decision-makers with partial observations to achieve a shared objective –, we formulate the decision problem as a decentralized-partially observable Markov decision process (dec-POMDP) model. To tackle a well-known difficulty of optimally solving a dec-POMDP model, multi-agent reinforcement learning (MARL) has been used as a solution technique. However, typical MARL algorithms are not always effective to solve dec-POMDP models. Motivated by evidence in single-agent RL cases, we propose a MARL algorithm augmented by pretraining. Specifically, we use behavioral cloning (BC) as a means to pretrain a neural network. We verify the effectiveness of the proposed method by solving a dec-POMDP model for a decentralized selective patient admission problem. Experimental results of three disaster scenarios show that the proposed method is a viable solution approach to solving dec-POMDP problems and that augmenting MARL with BC for its pretraining seems to offer advantages over plain MARL in terms of solution quality and computation time.

Suggested Citation

  • Lee, Hyun-Rok & Lee, Taesik, 2021. "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Elsevier, vol. 291(1), pages 296-308.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:296-308
    DOI: 10.1016/j.ejor.2020.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720308043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asli Kilic & M Cemali Dincer & Mahmut Ali Gokce, 2014. "Determining optimal treatment rate after a disaster," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1053-1067, July.
    2. Ardi Tampuu & Tambet Matiisen & Dorian Kodelja & Ilya Kuzovkin & Kristjan Korjus & Juhan Aru & Jaan Aru & Raul Vicente, 2017. "Multiagent cooperation and competition with deep reinforcement learning," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-15, April.
    3. Hyun-Rok Lee & Taesik Lee, 2018. "Markov decision process model for patient admission decision at an emergency department under a surge demand," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 98-122, June.
    4. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    5. Steven Thompson & Manuel Nunez & Robert Garfinkel & Matthew D. Dean, 2009. "OR Practice---Efficient Short-Term Allocation and Reallocation of Patients to Floors of a Hospital During Demand Surges," Operations Research, INFORMS, vol. 57(2), pages 261-273, April.
    6. Ramirez-Nafarrate, Adrian & Baykal Hafizoglu, A. & Gel, Esma S. & Fowler, John W., 2014. "Optimal control policies for ambulance diversion," European Journal of Operational Research, Elsevier, vol. 236(1), pages 298-312.
    7. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    8. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    9. Carri W. Chan & Vivek F. Farias & Nicholas Bambos & Gabriel J. Escobar, 2012. "Optimizing Intensive Care Unit Discharge Decisions with Patient Readmissions," Operations Research, INFORMS, vol. 60(6), pages 1323-1341, December.
    10. Izack Cohen & Avishai Mandelbaum & Noa Zychlinski, 2014. "Minimizing mortality in a mass casualty event: fluid networks in support of modeling and staffing," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 728-741.
    11. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    12. Dong Li & Kevin D. Glazebrook, 2010. "An approximate dynamic programing approach to the development of heuristics for the scheduling of impatient jobs in a clearing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(3), pages 225-236, April.
    13. Woonghee Tim Huh & Nan Liu & Van-Anh Truong, 2013. "Multiresource Allocation Scheduling in Dynamic Environments," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 280-291, May.
    14. Yagci Sokat, Kezban & Dolinskaya, Irina S. & Smilowitz, Karen & Bank, Ryan, 2018. "Incomplete information imputation in limited data environments with application to disaster response," European Journal of Operational Research, Elsevier, vol. 269(2), pages 466-485.
    15. Alex F. Mills & Nilay Tanık Argon & Serhan Ziya, 2013. "Resource-Based Patient Prioritization in Mass-Casualty Incidents," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 361-377, July.
    16. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    17. Li, Dong & Glazebrook, Kevin D., 2011. "A Bayesian approach to the triage problem with imperfect classification," European Journal of Operational Research, Elsevier, vol. 215(1), pages 169-180, November.
    18. Daniel S. Bernstein & Robert Givan & Neil Immerman & Shlomo Zilberstein, 2002. "The Complexity of Decentralized Control of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 819-840, November.
    19. Repoussis, Panagiotis P. & Paraskevopoulos, Dimitris C. & Vazacopoulos, Alkiviadis & Hupert, Nathaniel, 2016. "Optimizing emergency preparedness and resource utilization in mass-casualty incidents," European Journal of Operational Research, Elsevier, vol. 255(2), pages 531-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    2. Hyun-Rok Lee & Taesik Lee, 2018. "Markov decision process model for patient admission decision at an emergency department under a surge demand," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 98-122, June.
    3. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    4. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    5. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    6. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Panos M. Pardalos, 2023. "Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents," Annals of Operations Research, Springer, vol. 321(1), pages 717-753, February.
    7. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    8. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    9. Jingtong Zhao & Hanqi Wen, 2022. "Dynamic planning with reusable healthcare resources: application to appointment scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 859-878, December.
    10. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    11. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    12. Kamali, Behrooz & Bish, Douglas & Glick, Roger, 2017. "Optimal service order for mass-casualty incident response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 355-367.
    13. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    14. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    15. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    18. Dong Li & Li Ding & Stephen Connor, 2020. "When to Switch? Index Policies for Resource Scheduling in Emergency Response," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 241-262, February.
    19. Chi, Hong & Li, Jialian & Shao, Xueyan & Gao, Mingang, 2017. "Timeliness evaluation of emergency resource scheduling," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1022-1032.
    20. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:1:p:296-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.