IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i4d10.1007_s10696-021-09411-0.html
   My bibliography  Save this article

Dynamic planning with reusable healthcare resources: application to appointment scheduling

Author

Listed:
  • Jingtong Zhao

    (Columbia University)

  • Hanqi Wen

    (Peking University)

Abstract

In healthcare management, one important problem is how to efficiently allocate resources with limited capacities. From the point of view of a central decision maker with a long planning horizon, many healthcare resources such as appointment slots, operation rooms, and hospital beds can be regarded as reusable resources. Motivated by this observation, we study a new version of the assignment problem of reusable resources to sequentially arriving users. Different from previous works on reusable resources, we assume that each user will tell us the intended usage duration of each resource upfront before a decision needs to be made. In the setting where users arrive randomly according to a certain distribution, we propose an algorithm based on linear approximations of the optimal value functions, and show that it performs better than common methods developed for the case where usage times are known upon return in different simulations, as well as in a case study with real data. When users arrive in an adversarial order, we show by example that it is hard to design an algorithm with a lower-bounded competitive ratio. As users are much less likely to arrive in an adversarial order in reality, our proposed algorithm can be used to effectively schedule resources such as appointment slots and operation rooms in hospitals.

Suggested Citation

  • Jingtong Zhao & Hanqi Wen, 2022. "Dynamic planning with reusable healthcare resources: application to appointment scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 859-878, December.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:4:d:10.1007_s10696-021-09411-0
    DOI: 10.1007/s10696-021-09411-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09411-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09411-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    2. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    3. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    4. Woonghee Tim Huh & Nan Liu & Van-Anh Truong, 2013. "Multiresource Allocation Scheduling in Dynamic Environments," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 280-291, May.
    5. Yigal Gerchak & Diwakar Gupta & Mordechai Henig, 1996. "Reservation Planning for Elective Surgery Under Uncertain Demand for Emergency Surgery," Management Science, INFORMS, vol. 42(3), pages 321-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Augusto & Nadia Lahrichi & Ettore Lanzarone & Taesik Lee & Jie Song, 2022. "Analytics and Optimization in Healthcare Management," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 821-823, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    2. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    3. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    4. Jingui Xie & Weifen Zhuang & Marcus Ang & Mabel C. Chou & Li Luo & David D. Yao, 2021. "Analytics for Hospital Resource Planning—Two Case Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1863-1885, June.
    5. Woonghee Tim Huh & Nan Liu & Van-Anh Truong, 2013. "Multiresource Allocation Scheduling in Dynamic Environments," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 280-291, May.
    6. Yongbo Xiao & Yan Zhu, 2016. "Value management of diagnostic equipment with cancelation, no‐show, and emergency patients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 287-304, June.
    7. Dai, Jiajun & Geng, Na & Xie, Xiaolan, 2021. "Dynamic advance scheduling of outpatient appointments in a moving booking window," European Journal of Operational Research, Elsevier, vol. 292(2), pages 622-632.
    8. Lee, Hyun-Rok & Lee, Taesik, 2021. "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Elsevier, vol. 291(1), pages 296-308.
    9. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    10. Xinshang Wang & Van-Anh Truong, 2018. "Multi-Priority Online Scheduling with Cancellations," Operations Research, INFORMS, vol. 66(1), pages 104-122, January.
    11. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.
    12. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    13. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    14. Geng, Na & Xie, Xiaolan, 2012. "Optimizing contracted resource capacity with two advance cancelation modes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 501-512.
    15. Esmaeil Keyvanshokooh & Cong Shi & Mark P. Van Oyen, 2021. "Online Advance Scheduling with Overtime: A Primal-Dual Approach," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 246-266, 1-2.
    16. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    17. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    18. Na Geng & Letian Chen & Ran Liu & Yanhong Zhu, 2017. "Optimal patient assignment for W queueing network in a diagnostic facility setting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5609-5631, October.
    19. Yasin Gocgun & Martin Puterman, 2014. "Dynamic scheduling with due dates and time windows: an application to chemotherapy patient appointment booking," Health Care Management Science, Springer, vol. 17(1), pages 60-76, March.
    20. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:4:d:10.1007_s10696-021-09411-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.