IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i3p361-377.html
   My bibliography  Save this article

Resource-Based Patient Prioritization in Mass-Casualty Incidents

Author

Listed:
  • Alex F. Mills

    (Operations and Decision Technologies, Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Nilay Tanık Argon

    (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • Serhan Ziya

    (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

Abstract

The most widely used standard for mass-casualty triage, START, relies on a fixed-priority ordering among different classes of patients, and does not explicitly consider resource limitations or the changes in survival probabilities with respect to time. We construct a fluid model of patient triage in a mass-casualty incident that incorporates these factors and characterize its optimal policy. We use this characterization to obtain useful insights about the type of simple policies that have a good chance to perform well in practice, and we demonstrate how one could develop such a policy. Using a realistic simulation model and data from emergency medicine literature, we show that the policy we developed based on our fluid formulation outperforms START in all scenarios considered, sometimes substantially.

Suggested Citation

  • Alex F. Mills & Nilay Tanık Argon & Serhan Ziya, 2013. "Resource-Based Patient Prioritization in Mass-Casualty Incidents," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 361-377, July.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:361-377
    DOI: 10.1287/msom.1120.0426
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1120.0426
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1120.0426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    2. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamali, Behrooz & Bish, Douglas & Glick, Roger, 2017. "Optimal service order for mass-casualty incident response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 355-367.
    2. Sun, Huiping & Li, Yuchen & Zhang, Jianghua, 2022. "Collaboration-based reliable optimal casualty evacuation network design for large-scale emergency preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Alex F. Mills & Jonathan E. Helm & Yu Wang, 2021. "Surge Capacity Deployment in Hospitals: Effectiveness of Response and Mitigation Strategies," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 367-387, March.
    4. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    5. Mor Armony & Efrat Perel & Nir Perel & Uri Yechiali, 2019. "Exact analysis for multiserver queueing systems with cross selling," Annals of Operations Research, Springer, vol. 274(1), pages 75-100, March.
    6. Hyun-Rok Lee & Taesik Lee, 2018. "Markov decision process model for patient admission decision at an emergency department under a surge demand," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 98-122, June.
    7. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    8. Lee, Hyun-Rok & Lee, Taesik, 2021. "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Elsevier, vol. 291(1), pages 296-308.
    9. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    10. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    11. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    12. Retsef Levi & Thomas Magnanti & Yaron Shaposhnik, 2019. "Scheduling with Testing," Management Science, INFORMS, vol. 65(2), pages 776-793, February.
    13. Zhankun Sun & Nilay Tan?k Argon & Serhan Ziya, 2018. "Patient Triage and Prioritization Under Austere Conditions," Management Science, INFORMS, vol. 64(10), pages 4471-4489, October.
    14. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    15. R. K. Jha & B. S. Sahay & P. Charan, 2016. "Healthcare operations management: a structured literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 259-279, September.
    16. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    17. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    18. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    19. Mills, Alex F., 2016. "A simple yet effective decision support policy for mass-casualty triage," European Journal of Operational Research, Elsevier, vol. 253(3), pages 734-745.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamali, Behrooz & Bish, Douglas & Glick, Roger, 2017. "Optimal service order for mass-casualty incident response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 355-367.
    2. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    3. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Panos M. Pardalos, 2023. "Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents," Annals of Operations Research, Springer, vol. 321(1), pages 717-753, February.
    4. Pekár Juraj & Brezina Ivan & Čičková Zuzana, 2019. "Car Scrap Yards Network in Slovakia," Economics, Sciendo, vol. 7(1), pages 51-59, June.
    5. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Emmett J. Lodree & Nezih Altay & Robert A. Cook, 2019. "Staff assignment policies for a mass casualty event queuing network," Annals of Operations Research, Springer, vol. 283(1), pages 411-442, December.
    7. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    9. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    10. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    11. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    12. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    13. Rajagopalan, Hari K. & Saydam, Cem, 2009. "A minimum expected response model: Formulation, heuristic solution, and application," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 253-262, December.
    14. Sondes Hammami & Aida Jebali, 2021. "Designing modular capacitated emergency medical service using information on ambulance trip," Operational Research, Springer, vol. 21(3), pages 1723-1742, September.
    15. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    16. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    18. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    19. Ashley Childers & Maria Mayorga & Kevin Taaffe, 2014. "Prioritization strategies for patient evacuations," Health Care Management Science, Springer, vol. 17(1), pages 77-87, March.
    20. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:361-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.